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saliency effects using slow exciter 122 

71a Response of model IV to AT  ̂and Av̂ gf without and then with 
saliency effects using fast exciter 123 

71b Response of model IV to ATjjj and Av̂ gf without and then with 
saliency effects using fast exciter 124 

71c Response of model IV to Axm and Av̂ gf without and then with 
saliency effects using fast exciter 125 

72 The d-q-axes equivalent circuits of a synchronous machine 127 

73a Effects of ATjj  ̂and Av̂ g^ on model IV without and then with 
d-axis saturation using the slow exciter 128 

73b Effects of Ax̂  and Av̂ gf on model IV without and then with 
d-axis saturation using the slow exciter 129 
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I. INTRODUCTION 

A. Preamble 

The necessity of interconnecting several power systems is becoming 

increasingly important. As the interconnections grow, the need to 

automatically control the system, particularly during transient condi­

tions, also becomes necessary. This calls for proper and more detailed 

representation of the alternators for purposes of system analysis. The 

concern here is with a time span of a few cycles or seconds during which 

the system response is completely automatic, and so short a period that 

operator intervention is not possible. 

A synchronous machine can be represented in several ways for 

purposes of stability or dynamic studies. The choice of a model or 

machine representation depends on the type of assumptions considered 

valid for the type of machine and on the degree of accuracy desired in 

the results. Thus one can start with the representation of an "ideal" 

synchronous machine and then include, as necessary, the effects of those 

elements which make the machine deviate from the ideal. An ideal machine 

may be defined as a machine possessing no saturation effects, whose rotor 

and stator surfaces are shaped, and the electrical windings are distrib­

uted in such a way as to produce only fundamental frequency currents and 

voltages under balanced, synchronous speed, steady state operation. 

Of course, practical machines are not ideal. A major factor con­

tributing to the departure from the ideal is the existence of several 

nonllnearities appearing not only in the machine but also in the associ­

ated control components. 
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The purpose of this thesis is to identify some of the nonlinearities 

in a power system and some of the assumptions commonly made in building a 

machine model and then to determine how they manifest themselves in the 

output variables of the system model. 

B. Summary 

A brief review of the literature pertinent to this work is given in 

Chapter II. Chapter III contains the development of the machine models. 

In Chapter IV the effects of the two major exciter nonlinearities, ampli­

fier limiting and exciter saturation, on the nondynamic parameters of the 

excitation system are studied. The effects of these exciter nonlineari­

ties on a linear model of the synchronous machine are studied in Chapter 

V. A nonlinear model of the machine is analyzed in Chapter VI. Here the 

influence of the exciter nonlinearities and machine saturatio: on the 

machine output variables are studied. 

Chapter VII contains the conclusions of the studies and some 

suggestions for future work in this area. The list of references is in 

Chapter VIII. The appendices are patterned after the main body of the 

thesis. Thus Appendix A deals with the excitation system. Appendix B 

is on the linear model and Appendix C covers the nonlinear model. 
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II. EEVIEW OF LITERATURE 

A. Nonlinearity and System Modeling 

Various simplifying assumptions are always made in developing a 

mathematical model for a system. Even though almost every physical 

system is inherently nonlinear, neglecting nonlinearities is about the 

most common assumption. As the techniques for obtaining solutions for 

the mathematical models improve over the years, the various assumptions 

made in developing earlier models are gradually being re-examined. 

The power system models currently being used have been developed 

along the two reaction theory approach which was initiated by Park (96, 

97). Synchronous machine reactances developed by Prentice (105), the 

per unit system developed by Rankin (106, 107) and the modified normali­

zation developed by Lewis (74) were all in line with the two reaction 

theory. Several analyses of the synchronous machine are contained in 

the literature (5, 33, 66, 74), and some of them (5, 33) employ the 

modern control techniques in their analyses. 

The Increasing complexity, both in design and operations, of the 

present day power systems requires more detailed system models and one 

of the many ways of providing the necessary detail is to include, in one 

form or another, the system nonlinearities (57, 89, 91, 94, 104, 108, 

109, 116, 119, 136, 142). 

B. Types of Nonlinearities 

The nonlinearities in a power system exist in many different forms. 

Those very commonly mentioned in the literature are the nonlinearities due 
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to machine saturation, nonlinearities due to speed, saliency and the 

control section, ie. nonlinearities due to amplifiers, limitera, exciter 

saturation (5, 6, 82, 91, 108, 121, 140). The major nonlinearities of a 

hydro governing system are the variation of turbine characteristics with 

load and constraint on the motion of the turbine wicket gates (133). 

Another type of nonlinearity is that associated with the nonlinear 

system of equations which result whenever one models an alternator (4, 5, 

6, 35, 83, 110, 116). This type of nonlinearity shows up as speed 

voltage terms in system equations and is interesting because it depends 

on the way in which the original time varying differential equations are 

transformed. 

C. The Excitation System 

Because of its direct effects on the initial operating conditions 

and its fast response as compared to the governor and load frequency 

control, the excitation system has received wide coverage in the litera­

ture (9, 12, 17, 19, 20, 26, 28, 44, 55, 91, 108, 136). 

Amplifier limiting and exciter saturation are the commonly mentioned 

nonlinearities in the excitation system. However, several authors and 

machine designers in different organizations use somewhat different 

techniques in handling exciter saturation (13, 40, 52, 82) . 

D. The Alternator 

Perhaps the most important nonlinearities in an alternator are those 

due to saturation. Among these are tooth saturation due to air gap flux, 

saturation due to stator slot leakage, yoke saturation, and rotor 
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saturation in both round rotor and salient pole machines (121). The 

nonlinear inductances in the machine often cause subharmonic oscillation 

which may lead to outages (108, 140). 

At present there is no general agreement concerning representation 

of machine saturation. While various authors neglect saturation com­

pletely, others represent saturation only in the direct axis of the 

machine and a few represent saturation in both the direct and quadrature 

axes (14, 25, 36, 57, 72, 89, 90, 91, 94, 108, 109, 119). 

However, the presence of nonlinearities in the system essentially 

invalidates the use of two-axis quantities which are derived by the 

application of the superposition principle. Hence representing saturation 

effects in the direct and quadrature axes is still to be considered an 

approximation (108, 109, 119). 

E. Load Nonlinearities 

Power system loads are, in general, nonlinear. However, because of 

their usually remote location from the machine terminals, most authors 

treat system loads as a constant impedance. 

The stochastic load variations may be considered to be of scheduling 

concern and not so much a stability problem (22, 101). Where system 

stability and control problems are concerned, the literature contains 

adequate evidence showing that significant differences exist between the 

results obtained when load nonlinearities are neglected and when they are 

included in the studies (1, 18, 42, 89, 91, 132). Several methods of 

representing loads have been proposed (11, 60, 94, 109). 
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Although load nonlinearities are of direct concern in the study of 

system stability, no effort will be made here to improve upon techniques 

already proposed. Instead, our effort will be concentrated on the 

generator and generator controls. 

F. System Damping 

Damping in a control system falls into two main categories : 

"induced" damping and "forced" damping. In the synchronous machine the 

damping produced by the various machine torques may be called "induced" 

damping (20, 65, 81, 126). The "induced" damping is usually not enough 

to combat the problems of stability and control of a power system. An 

evidence of this is the existence of extensive literature on how to best 

produce "forced" damping (14, 34, 44, 57, 59, 77, 91, 111-116, 136). 

A relatively new type of "forced" damping is the use of d-c link 

to provide damping in a parallel ac-dc power system (23, 99, 100). 

However, this is not an economically justifiable reason for constructing 

a d-c line. 

Another category of damping is the fictitious damping that needs to 

be included in a linear model of a power system in order that the model 

may be more stable or in order that the response of the linear model 

appears similar to that of the actual system (36, 50, 70). 

G. Method of Analysis 

Several linear methods of analysis and synthesis such as Bode plots, 

eigenvalue tests, Nyquist's criterion, root locus plots and Routh Hurwitz 
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criterion have been applied to linear models of power systems (5, 19, 24, 

58, 75, 82, 98). 

Studies of power system stability and control have developed along 

two distinct paths. The first is the digital computer approach and is an 

extension of the well established network analyzer simulation (6, 35, 47, 

79, 82, 90, 91, 104, 124, 125, 132, 135). The second approach, based on 

Park's equations (96, 97), is the use of analog computers and provides 

a more detailed representation of the synchronous machine (2, 3, 10, 13, 

79, 87, 109, 110, 115, 116, 118, 119). 

Some of the studies involving the nonlinear!ties in the synchronous 

machine have developed along the line of field theory (15, 56, 67, 68). 

Recent advances in nonlinear control theory have significant impact 

on power system stability studies. Several texts are now available in 

nonlinear control theory (37, 41, 46, 69, 71, 80, 102). As a result of 

these developments Lyapunov's methods, Popov's method and Zubov's method 

have been applied to power system stability studies (31, 43, 69, 76, 95, 

120, 126, 130, 131, 139, 143). 

Some papers on the nonlinear nature of power system have been 

spurred by the latest developments in optimal control theory (122, 123, 

137). 

H. Scope of the Investigation 

The foregoing sections A-G pose several questions with respect to 

the automatic control and stability analysis of a power system. Some of 

the questions thus raised motivate the study contained in this disserta­

tion. 
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Young (142) emphasized the need to have several mathematical models 

of a synchronous machine with varying degrees of complexity so that, 

depending on the nature of the study, one can choose any model as needed. 

The increasing importance of stability and related studies on the power 

system dynamics gives this approach much credibility. 

Tinney (128) mentioned the fact that many of the present day 

stability studies neglect complications such as limiters, saturation 

and other nonlinearities which cause difficulties. Reviewing the refer­

ences cited under Method of Analysis (section G) leads one to support 

Tinney's view. This makes one wonder about the importance of including 

or neglecting the system nonlinearities on various system studies. 

As noted earlier the commonly mentioned nonlinearities in a power 

system are those due to the machine saturation, the exciter saturation 

and the amplifier limiting. Several authors have emphasized the need 

to represent some or all of these nonlinearities in stability and related 

studies (14, 25, 36, 40, 57, 72, 89, 91, 94, 108, 109, 119, 131, 143). 

All but one (72) of these references mentioned the nonlinearity 

represented in their work only insofar as was deemed necessary to obtain 

satisfactory results, that is, not with the explicit purpose of studying 

the effect of nonlinearities <. 

Lemay and Barton (72) studied the small perturbation linearization 

of the saturated synchronous machine equations. The purpose of their 

paper was "to describe the correct method of including saturation in the 

small perturbation equations of a synchronous generator and to use the 

modern concepts of modal analysis to measure the importance of the effect 

of saturation on the unregulated behavior of the machine." The paper 
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represented saturation in the direct axis. Among the conclusions reached 

is that the eigenvalues and eigenvectors of the system state-matrix give 

a quantitative measure on the effect of saturation on the modal components 

of the machine response. 

From the foregoing considerations, it is considered appropriate to 

study the effects of system nonlinearity on system performance. The 

nonlinearities considered in this study are the exciter saturation, the 

amplifier limiting and the machine saturation represented in the direct 

and quadrature axes of the machine. Four mathematical models of a 

synchronous machine are developed. Using the analog computer, the effects 

of the excitation system nonlinearity on three of the models are studied. 

Studies of the fourth and the most detailed model include saturation in 

direct and quadrature axes. 



www.manaraa.com

10 

III. MACHINE MODELS 

The purpose of this chapter is to outline the different machine 

models which are used in the succeeding chapters. Only the basic equa­

tions used in deriving the small signal models are given in this chapter 

and the details of manipulating these equations to obtain the simulated 

form of the equations are covered in the appendices. 

An ideal synchronous machine is a machine without saturation effects 

and a machine where the rotor and stator surfaces are shaped and their 

electrical windings are distributed so as to produce only fundamental 

frequency currents and voltages under balanced, synchronous speed, 

steady-state operation at synchronous speed (142). 

For any studies involving the synchronous machine, the complete set 

of machine equations of an ideal machine may be used with a correction 

for saturation effects. However, this requires considerable detail in 

representing the system; otherwise, the results may be misleading. A 

rigorous solution of the problem would require that the machine repre­

sentation, the transformers, the transmission lines and even the loads 

would have to be represented by their differential equations. This 

approach would rapidly increase the complexity of the computation to the 

extent that only a relatively simple system would be represented either 

on an analog computer or even on a large-scale digital computer. 

Therefore the type of studies to be made should be carefully con­

sidered, following which the appropriate simplifying assumptions can be 

made. In general the fewer the simplifying assumptions, the more complex 

the machine representation. 
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The dimensions and complexity of a power system dynamics can be 

visualized from Figure 1 which shows a schematic diagram of power system 

and controls (23). Similar figures are contained in references 5 and 16. 

Several hundreds of interacting elements, including the generators with 

their prime movers, energy supply systems and control, are involved in 

the system. A mathematical representation of each element generally 

involves a set of high order nonlinear differential equations. However, 

it is not often that all areas need to be represented simultaneously in 

equal detail. Various opportunities for simplifications arise in 

several ways: 

1) Since the several elements of the power system have different 

time constants, the duration of effects and resolution in time 

over which the effects are of significance can be used to 

simplify a model. For example, it is not necessary to represent 

boiler transients which develop over several minutes if the 

transient stability phenomena over a second or two are the 

primary effects under investigation. Extremely fast transients 

such as switching transients of high frequencies need not be 

represented for this same problem. 

2) Some simplifications arise from the range of variables under 

consideration. For example, the assumption of constant speed 

in the generated voltage equations and constant frequency for 

the network impedance parameters is perfectly justified in normal 

power system transients where frequency excursions are small 

(Chapter 2, section 2.1 of reference 5). 
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3) The number of elements of a kind that need to be represented 

sometimes form a basis for simplification. An example of this 

is the study of the case of the single machine against an 

infinite bus. Many concepts about a power system can be developed 

from this study. However, there are a few fundamental effects, 

such as the study of detailed control effects, that cannot be 

studied better on a one- or ten-machine system representation 

than on a 100-machine representation. 

4) The loading of a system may offer opportunities for 

simplification. For example, effect of saturation is less 

at low voltage or at leading power factor operation. 

A. Modeling Philosophy 

Using somewhat different simplifying assumptions, four machine 

models are developed. The philosophy used in developing the models from 

the control theory and power system points of view is presented in this 

section. 

Basically the synchronous machine with its associated control 

equipment may be considered to be a multiple input and multiple output 

control system. Depending upon which output variable is to be corrected, 

the corresponding input variable can be varied appropriately. Sometimes 

varying one input affects all the output variables but, in general, the 

effect of changing an Input variable is always more pronounced on some 

output variables than the others. 
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The mechanical torque, and the exciter voltage, VF, are probably the 

most important input variables of a synchronous machine. The load torque 

primarily determines the mechanical or megawatt output of the machine while 

the field voltage primarily determines the reactive or megavar output of 

the machine. 

Many output variables of a synchronous machine are observable. Of 

these the most important, at least from the system operator's point of 

view, are the machine power output, P, or the electrical torque, Tq» 

the rotor speed, w, or the frequency and the machine terminal voltage, v^. 

Figure 2. A general synchronous machine block diagram 

The foregoing is summarized in Figure 2. The field voltage, Vg, is 

an output variable of the excitation system. Apart from the system 

feedback and compensating signals, the main input of the excitation 

system is the reference voltage, v^gj . A change in v^gf therefore leads 

to a corresponding change in v^. 

In terms of the introductory statements made at the beginning of this 

chapter, the foregoing focuses attention on the fact that it is not only 

the detail or time region of Interest which determines the model to be 

used but also the kind of response desired. The response due to a step 
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change in the reference voltage, is not necessarily the same as 

that resulting from a step change in the mechanical tort^ue, 

The choice of simplifying assumptions and the type of response 

desired lead to different mathematical models for the synchronous machine. 

B. Model I - A First Order Approximation 

Model I, which is a first order approximation of the synchronous 

machine, is the simplest of the four models discussed. The assumptions 

used in developing this model and their comparison with the assumptions 

used in the remaining models are shown in Table 1 (see end of the chapter) . 

= CONSTANT 

W = CONSTANT V 

(a) (b) 

Figure 3. Block diagrams for model I 
(a) Model I in terms of the general block diagram shown in 

Figure 2 
(b) Model I showing transfer function 

Figure 3(a) shows model I in terms of multiple input multiple output 

block diagram discussed in section A of this chapter. The mechanical 

torque, the electrical torque, T^, and the rotor speed are all assumed 

to be constant and are not represented in the model. 

Figure 3(b) Is a more detailed block diagram for model I. Kg repre­

sents the generator gain, Tq is the generator time constant and it can be 

the same as the direct axis transient open-circuit time-constant, T^^, 
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Sg is the generator saturation function and S denotes the Laplace 

transformation variable. This model is derived in Appendix A, part A. 

In general. Kg is not always specified in machine data. The data required 

for this model and the other models are shown in Table 2 (see end of the 

chapter). Also, since most of the symbols are introduced in this chapter, 

the list of principal symbols are given in Table 3 (see end of the 

chapter). 

This model is often used whenever a detailed study of the excitation 

system is being conducted (5, 33, 98). In its application, the saturation 

term Sg is usually neglected. The first order approximation of the 

generator voltage response is very crude, but it allows us to concentrate 

on the characteristics of the excitation system without added complexity 

of the generator. The model is investigated with the excitation system 

in Chapter IV. 

Model II represents an opposite view of the synchronous machine as 

compared to model I in that v^ is now assumed constant and is the only 

variable input quantity. Figure 4 is a block diagram representation of 

this model in terms of the general block diagram discussed in section A 

of this chapter. 

C. Model II - The Classical Swing Equation 

T 
m 

+ 
0 

O )  

T 
e 

Figure 4. Block diagram for model II 
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The assumptions used in developing this model are compared with the 

assumptions used in developing the other models in Table 1. Using the 

same order of numbering as in Table 1, the assumptions used for model II 

are: 

1) The currents and voltages in the stator and the connected system 

are of fundamental frequency only. All harmonic and dc offset 

currents and voltages are neglected. 

2) Machine speed variations do not affect the generated voltage 

(by this we mean that the speed is assumed to be constant). 

3) The unbalanced conditions are represented by symmetrical 

components. 

4) The field flux linkages remain constant in magnitude. 

5) Amortisseur currents and their effects are negligible. 

6) Transient saliency is negligible. This is the same as saying 

that the field flux linkages (e^) have the same magnitude as the 

voltage behind the transient reactance and that the angle of the 

quadrature axis is the same as the angle of the voltage behind 

the transient reactance. Mathematically this means that Xq 

and Xq are both equal to in the system equations. 

7) The armature resistance is negligible. 

8) The dip/dt or dX/dt terms are negligible. 

9) Saturation is neglected, 

10) The load torque, is constant. 

The first three assumptions are the basic assumptions usually made 

for all stability studies, regardless of the detail of representation of 

the control systems, the loads, or the machines (142). As a consequence 
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of the first assumption, the machine and system voltages and currents can 

be represented by phasors. The existence of do offset current, particu­

larly for faults near the machine terminals, offers a major restriction 

to the first assumption. If the machine speed is constant and only 

fundamental frequencies are permitted, the system would be solved by 

phasor algebra for any steady state condition or at any given instant of 

time. Under these conditions, symmetrical components may be used to 

represent unbalanced conditions as noted in the third assumption. 

The resulting machine equations obtained with the three basic 

assumptions are still complex and further simplifying assumptions become 

necessary. The additional assumptions necessary for model II are given 

above. Usually the stator resistance is neglected in applying this 

model. 

The only differential equation that needs to be solved for this model 

is the acceleration equation: 

=  2  -  : E )  

This model is particularly suitable for studying first-swing 

transient stability and should not be used for dynamic or steady-state 

stability. The model has been included here because of its historical 

importance. 

D. Model III - Linear Model 

Model III is more detailed than either models I or II. In this 

model, the synchronous machine is considered to be a two input system with 
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Tq and Vf as the Input variables. The output variables observable In 

with the general block diagram discussed in section A of this chapter is 

shown in Figure 6 which is drawn directly above a more detailed block 

diagram for purposes of comparison. With this model the effect of varying 

both and v^ on the output variables can be studied. 

The mathematical development of model III requires fewer simplifying 

assumptions than those used for model II (see Table 1) . Only eight of 

the ten assumptions used for model II are necessary for model III. The 

assumptions that the field flux-linkages, Xp, and the mechanical torque, 

Tjq, are constant are not used here. This implies that model III will be 

more complicated than model II. 

Figure 5. A single machine against infinite bus 

Consider a machine connected to an infinite bus, with a voltage v, 

through an external impedance Rg + jXg as in Figure 5. Then using the 

above assumptions, the following equations expressed in per unit apply (24); 

this model are e^, w, 6 and v^. A block diagram comparing this model 

V ?  "  V ^  +  V ^  
d q 

[2]  

13] 

Y D  °  A D  - [41 

\ ' 4+ <*q - *d>^d [51 
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• ' E  =  V Q  

Vg = yjT V [7a] 

id = [eq - Vg cos SlflXg + Xq]/[R^ + (X^ + X^)^]} 

- Vg sin 6 {Rg/[R| + (Xg + X^)^]} [7b] 

IQ = I'Q - 'B "="= + (%E + 

+ Vg sin S {[Xg + Xq]/[R2 + (Xj. + X^)^)} [8] 

\ - \D'£D - «D - V^D 

''do'"ai"' " ®£d " W(d [1°] 

V -  • ' E  -  [111 

Linearizing all the equations and simplifying to retain the basic 

variables e^^ and 6^ leads to (see Appendix B for this derivation): 

^ E I  =  [ 1 2 :  

e' = - Va' [13] 
1 + =IDO^3 

Aw = dt [15] 
au " U  -  I P  

6^ = 3771 Aoj.dt [16] 

where K^, K2, K3, K^, Kg and Kg are as defined in Appendix B and 
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Equations 15 and 16 result from the torque angle relationships for the 

condition of the constant flux linkages in the direct axis. 

Deleting the subscript "A's" in Equations 12 through 16, the block 

diagram resulting from the,equations is shown in Figure 7. The portion 

of the figure indicated by broken lines shows the additional block that 

results if Equation 11 is rewritten to include damping thus: 

+ DÂS. [LL'L 
df^ dt 

Figure 6 shows model III in terms of the general multiple input 

multiple output system discussed in section A of this chapter. 

As shown in Table 2 this model requires more system data than 

either model I or model II. The model is analyzed in Chapter V. 

E. Model IV - The Nonlinear Model 

The purpose of this model is to represent the synchronous machine 

with as few assumptions as possible. In terms of the general block 

diagram presented in section A, the two inputs Vf and are included 

and all the important output variables are observable. 

As shown in Table 1, three of the ten assumptions listed in the 

table are used in developing this model. Two additional assumptions 

which do not necessarily belong to those considered in Table 1 but which 

are required for the mathematical description presented here are: 

a) It is assumed that the machine can be adequately represented 

by six magnetically coupled windings: three stator windings, 

one field winding and two amortisseur or damper windings 
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Figure 7. Detailed block diagram for model III 
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which represent the equivalent damping on each axis of the 

rotor. 

b) The flux linking each winding is a function of rotor position. 

The second of the three basic assumptions usually made for all 

stability studies has been deleted in formulating this model; that is, 

the assumption that the generated voltage is not affected by machine 

speed variations does not apply here as evidenced by the appearance of 

speed voltages in the transformed version of the voltage equations (see 

Appendix C). However, the assumption does apply to a modified form of 

this model (142). 

Figure 8 shows the pictorial representation of a synchronous machine. 

If r is the resistance of the winding, 1 is the current flowing in the 

winding and X is the flux linkage, then the Instantaneous terminal 

voltage of any winding is of the form 

V  =  ± Z r i ± E X  [ 1 7 ]  

The various voltages in the machine can be written from the circuit 

diagram shown in Figure 9 as: 

^ A  

^ B  

V 
c 

-V. 

0 

I" 

r 0 0 0 0 0 

0 r, 0 0 0 0 
D  

0 0 r 0 0 0 c 

0 0 0 rp 0 0 

0 0 0 0 RJJ 0 

0 0 0 0 0 r. 

ia 

S > 
ic A 

c + 
"Xn 

^F 4 
0 

/Q. 'Q. 

volts [18] 
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Figure 8. Pictorial representation of a synchronous machine 

i 
a 

Figure 9. Circuit diagram of a synchronous machine 
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where 

Z N  =  -  F N  

1 1 1  

1 1 1  

1 1 1  

- L_ 

I l l  ia 

1 1 1  
H 

1 1 1  i c 

volts [19] 

= - ̂ BC - WABC VOLTS 

Equations 17 and 18 include the flux linkage terms which are 

obtained from the flux linkage equations: 

^AA ^AB \C ^AF ^AD ^AQ 

Q 

where 

^BA 4)B ^BC 4,D HQ 

^CA ^CB ^CC ^CF ^CD ^CQ 

^A ^ ^FC ^FF ^FD ^FQ 

S A  S B  S C  S F  S D  S Q  

^QA ^QB ^QC ^QF ^QD ^QQ 

weber-turns [20] 

g rself-inductance when j = k 
jk \mutual inductance when j k 

As shown in Appendix C all but three of the inductances in Equation 

20 are time varying. Also in Appendix C, Equations 18 and 20 are 

transformed to odq reference frame by a modified form of Park Transform­

ation. The series of manipulations on the transformed equations which 

finally results in an analog computer representation of this model are 

described in Appendix C. Model IV is investigated in Chapter VI. 
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The list of data needed for an analog simulation of this model is 

shown in Table 2. The quantities X", X", X', T" , T* and T" also shown 
d q q do qo qo 

in Table 2 are required only if the equations are written for a modified 

form of this model which is often used for a power system digital computer 

stability program (142). 
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Table 1. A comparison of the assumptions used In the models 

Assumptions Model I Model II Model III Model IV 

1 Fundamental frequency emfs / / / 

2 Constant speed, w / / / 

3 Symmetrical components / / / 

4 Constant field flux linkages / 

5 Neglect amortisseur effects / / / 

6 Neglect sallency / / / 

7 Neglect armature resistance / / / 

8 Neglect d^/dt or dX/dt terms / / / 

9 Neglect saturation _* / / 

10 T Is constant / / 

* 
Neglected In equations, accounted for by external feedback method. 
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Table 2. Data needed for the models 

Constants Model I Model II Model III Model IV 

X J  X X X  

X D  X X  

X Q  X X  

T '  X  X X  
do 

4  X  

H  X X X  

R G  X X  

X G  X X  

L P  X  

%  X  

LJJ X 

A Q  X  

L Q  X  

R P  X  

X  

R Q  X  

x;; X 

X "  X  Q  

X '  X  q 

^ D O  ^  

T "  X  
qo 

T '  X  
qo 
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Table 3. Symbols used in the models 

Symbol Description 

V£ = — e^^ Generator field voltage 

Generator terminal voltage 

Sg Generator saturation function 

Kg Generator gain 

Tg Generator time constant 

Direct axis open circuit transient time constant 

Field flux linkages, per unit 

Xd = Direct axis synchronous reactance 

Xq = wL^ Quadrature axis synchronous reactance 

Xq Quadrature axis transient reactance 

Xj Direct axis transient reactance 

6 Angle between q axis and reference axis 

H Inertia constant, seconds 

Mechanical torque 

Electrical torque 

Line resistance 

Line reactance 

Armature voltage, direct and quadrature axis components 

Armature flux linkages, direct and quadrature axis components 

Armature current, direct and quadrature axis components 

Bq Voltage proportional to direct axis flux linkages 

eq Quadrature axis flux linkages 

V Voltage at the infinite bus 

m 

T 
e 

% 

^E 

Vd' 

^d' 

^Q 
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Table 3 (Continued) 

Symbol Description 

Vg Transformed voltage at the infinite bus 

ij Field current corresponding to e^^ 

M Inertia coefficient = 2H, seconds 

D Damping coefficient 

u Rotor speed 

A Flux linkages 

Armature leakage inductance 

2^ Field leakage Inductance 

Amortisseur leakage inductance, direct and quadrature axis 

components 

Lg, Iq Amortisseur inductance, direct and quadrature axis components 

Xj, Xq Subtranslent reactance, direct and quadrature axis components 

T^o» Subtranslent open circuit time constant, direct and quadrature 

axis components 

Tqo Quadrature axis transient open circuit time constant 

Lj. Field inductance 

r^ Field resistance 
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IV. MODEL I - ANALYSIS OF THE EXCITATION SYSTEM 

In this chapter the first order approximation of the generator 

(model I) is used to study the performance of the excitation system. 

Studies dealing with various aspects of excitation systems fall into 

two groups. The first group consists of low response ratio excitation 

systems while the second group contains the high response excitation 

systems. Even though most new large oncoming generating units will have 

high response, static excitation systems, the power system remains 

dominated by the conventional, low response, rotating exciter systems 

Two typical exciters, each representing one of the two groups of 

excitation systems, are investigated. In part A, the root locus tech­

nique is used to determine the appropriate range of values for the 

nondynamic parameters of the excitation system. Using some of the range 

of values determined in part A, the effects of the exciter saturation 

and amplifier limiting on the stability performance are studied in part 

B, using the analog computer. 

(112). 

A. Root Locus Analysis of the Excitation System 

e 

PT & 
RECT. 

5 
V. t 

AMP REG — REF 

Figure 10. Simplified diagram of a boost-buck system 
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Consider the continuously regulated excitation system shown in 

Figure 10. A step-by-step analysis of each of the components of the 

boost-buck system leads to the following set of equations in the S-domain 

(see Appendix A). 

Potential transformer 
and rectifier: 

V T  
1  +  T R S  

[21] 

Comparator ; 

Amplifier: 

Exciter: 

Generator: 

= K(VRAF - VJ;) 

= ^ ® , V < V < V 
1 + T s Bmin R Emax 

A 

V ,  = : A Z V F  

_ VF - SÇ^T 
L + TGS 

[22] 

[23] 

[24] 

[25] 

The variables appearing in Equations 21-25 and in Figure 10 are 

defined in Table 4. Combining the equations leads to the block diagram 

representation of the excitation system as shown in Figure 11. 

ref y 
/ ' 1  +  T . S  

A I Kg + Te: 1 H-TJ-S 

Figure 11. Block diagram of the uncompensated excitation control system 
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Table 4. Symbols used in the excitation system 

Symbol Description 

Rectifier output voltage 

Kj^ Regulator input filter gain 

Generator terminal voltage 

Tp Regulator input filter time constant 

Amplifier input voltage 

' R  

V 
e 

Regulator reference voltage setting 

Regulator output voltage 

Regulator amplifier gain 

Regulator amplifier time constant 

Vg Exciter output voltage 

Regulator stabilizing circuit time constant 

Sg Exciter saturation function 

Kg Exciter constant related to self excited field 

Tg Exciter time constant 

Kg Generator gain 

Sg Generator saturation function 

T q  Generator time constant 

^Rmax Maximum value of Vg^ 

^Rmin Minimum value of v^ 



www.manaraa.com

34 

Neglecting limiting and saturation in Figure 11, the open loop 

transfer function KGH is 

KGH = A X R 
(1 + T^S) (Kg + TeS)(1 + TgS)(l + T^S) 

V. t _ KG 

'ref ^ + KGH 

T T T  ̂ T ' 
A E G  R  

1 KP 1 1 KAKOKTJ 
(S +f-)(s + ;p)(S +^)(s +$-) + t t t t  

^E ^G VE^G^R 

Consider a system whose parameters are specified as (5) 

[26] 

^A = = 0.1 sec % = : -0.05 

^E = 0.5 sec ^G ' 
= 1.0 

TG = : 1.0 sec ^A = = variable 

TR = 0.05 sec 

These are part of the parameters of the slow exciter. The complete 

list of the excitation system parameters is given in Appendix A, part C. 

Substituting the above values into Equation 26 leads to 

Vt 20 K.(S + 20) 
^ [ 2 7 ]  Vpgf (S + 10) (S - 0.1) (S + 1)(S + 20) + 400 K^ 

Applying Routh's stability criterion to the denominator of the right 

hand side of Equation 27 shows that the system Is stable for 0.05 < K^ < 

3.215 and that the root locus plot crosses the ju axis at S = ± j2.4. 
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Since the system becones unstable at very low values of gain, the excita­

tion system requires an appropriate condensation. 

A possible method of compensating the excitation system is to 

introduce rate feedback as shown in Figure 12 where Kp is the feedback 

gain and Tp is the corresponding time constant. Then the problem becomes 

that of choosing K^, Kp and Tp such that a given performance criterion is 

satisfied. In order to stu^ the effects of varying Kp and Tp on the 

root locus of the system, it is convenient to first reduce the block 

diagram shown in Figure 12 to the form shown in Figure 13. Then both 

the open loop and closed loop transfer functions of the uncompensated 

system are, respectively: 

T S(S + ̂ ) (S + ̂ ) + ~ (S + ̂ )] 
K ® .  W GFF ^ ][G [28] 

(S + (S + % (S + i_) (S + 1_) (S + 1_) 
T a Tg Tg Tj Tp 

'REF 
(s + i-)(s + ̂ (s + i-) (s + i.) (s + iL) + c 

' A  E 

[ 2 9 ]  

% 
WG 

4 ̂ ~ S(s + (S + +-^ (S + 1_) 

X  R  

The closed loop transfer function given by Equation 29 is particu­

larly useful itfaenever the effects of varying one or two parameters within 

a limited range is being studied. Using the given system data and 
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ref + 

Figure 12. Block diagram of the excitation control system with rate 
feedback (limiting and saturation neglected) 

( 1  +  +  1J){\ +  

^ SO + TçS)0 ^ T^S) + K^(l + TpS) 

— (1 + TPS)(I + -

Figure 13. Reduced form of Figure 12 



www.manaraa.com

37 

Equation 29, Figures 14, 15 and 16 show the time response of the system 

to a unit step input for various values of and K^. Table 5 compares 

the time response shown in Figures 15 and 16. 

Table 5. A comparison of Figures 15 and 16 

^A 4 
Settling time 

sec 
Overshoot 

% 
Rise time 

sec 

200 0.015 0.15 
200 0.020 1.60 100 0.15 
200 0.025 0.75 75 0.15 
200 0.030 0.90 52 0.15 
200 0.035 1.00 42 0.15 

400 0.015 2.00 145 0.10 
400 0.020 0.65 75 0.12 
400 0.025 0.70 45 0.12 
400 0.030 0.80 40 0.14 
400 0.035 1.30 35 0.20 

The above approach of finding the time response of the system becomes 

rather expensive in terms of digital computer runs whenever several 

parameters or extensive range of values of a parameter are to be studied. 

At this point the root locus technique appears to be more appropriate. 

Substituting the given system quantities which are the parameters of 

the slow exciter into Equation 28 leads to: 

20K. [-^ S(S + 1) (S + 20) + 20(S + ̂ )] 
A I P  

KGH = — [30] 
(S + 10) (S - 0.1) (S + 1)(S + 20) (S + ̂ ) 

^ F  
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KC = 0.015 «-•"F 

V F  0  

O KP =0.020 

qO Kp = 0.025 

O KP = 0.035 

KP = 0.030 

TIME, SECONDS 

O  

KP «=0.015 

KP = 0.020 

KP =0.025 

KP = 0.030 

KP = 0.035 

Figure 14. Time response of Equation 29 to a unit step input for = 20 
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KM =0.015 

Ka =200 

= 0.020 

TIME, SECONDS 

Figure 15. Time response of Equation 29 to a unit step input for = 200 
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K. «=0.015 

KC «= 0.020 

V  F  

Kc = 0.025 

\^)000000000000000 

0 

Km = 0.035 Kg «= 0.030 

0 

TIME, SECONDS 

Figure 16. Time response of Equation 29 to a unit step input for = 400 
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The root locus technique can be used to determine the appropriate 

range of Kp and that merit further investigation. As a first step in 

this direction, consider the bracketed terms in the numerator of Equation 

30: 

If S(S + 1)(S + 20) + 20(S + i-) = 0 [31a] 
F  T P  

bs(S + 1)(S + 20) + 20(S + a) = 0 [31b] 

•^(S + a) 

^ S(S + 1)(S + 20) " ° 

^ S(S +^1)(S + 20) " ° 

where 

Equation 31c is of the form 1 + KGH = 0. Hence, we can plot its root 

locus to observe the effects of varying K. There are three cases of 

interest: 0 < a < 1, 1 < a < 20 and a > 20. The root loci corresponding 

to the three cases are sketched in Figure 17. Exact location of m and 

the breakaway point for each root locus depends on the value of "a" used. 
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Corresponding to each of the loci in Figure 17, there are two types of 

loci of KGH (Equation 30); one exists when all the zeros are real, and 

the other exists for a real zero and a complex pair of zeros. The six 

root loci resulting from these considerations are shown in Figure 18. 

Cases lA, IB, IIA, and IIIA indicate that the response will be dominated 

by the real root near the origin. Therefore, the system response 

corresponding to these cases will be sluggish. Case IIB appears to be 

the most promising if an appropriate damping can be determined. 

-20 

CASE I 

-a -20 

CASE II CASE III 

Case I : 0 < a < 1 
- 10.5 < m < - 10 

Figure 17. Root loci of 1 + 

Case II ; 1 < a < 20 
- 10 < m < - 0.5 

Case III : a > 20 
- 0.5 < m 

K(S + a) 
S(S + 1)(S + 20) 

= 0 

From the above analyses, the range 1 < a < 20 or 0.05 < Tp < 1 merits 

further investigation. Thus, more detailed root loci can be prepared for 

several values of Tj. in this range. From the root loci, appropriate sets 

of Kp resulting in a stable system and satisfying a specified performance 

can be determined. Using various sets of Tp and Kp, other sets of root 

loci are plotted to show the effects of varying K^. 
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Case lA; All real zeros Case IB: One real, one complex pair 
0 < a < 1 0 < a < 1 

Case IIA; All real zeros Case IIB; One real, one complex pair 
1 < a < 20 1 < a < 20 

Case IIIA: All real zeros Case IIIB: One real, one complex pair 
a > 20 

real, one complex pair 

Figure 18. Root loci of KGH - 20K^ (s + t -TikI" a) 
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CASE LA 

-10 

CASE IIA 

-10 -a 

CASE IIIA 

-10 -20 -m 

CASE IB 

CASE IIB 

R-LO -M 

CASE IIIB 
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Table 6 shows the values of and considered suitable for 

further investigation. These values are used in the various studies 

discussed in the remaining portion of the thesis. 

Table 6. Values of Tp, and Kj, used 

0.1 400 0.015 
0.2 600 0.020 

0.025 
0.030 
0.035 

B. Results of Analog Computer Studies of the Excitation Control Systems 

An Electronic Associates' analog computer model EAI 8812 was used 

to simulate the compensated excitation control system whose block diagram 

is shown in Figure 19. 

V ,  

^ TT 
'ref 

1  + T . S  

R max 

R min 

IÇTT^ 

SATURATION _ 
FUNCTION 

SKP 

1 + TPS 

GENERATOR 

TTĴ  

Figure 19. Block diagram of the compensated excitation control system 
with amplifier limiting and exciter saturation 
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Two types of exciters were considered for the analog computer 

studies. The first, a slow exciter, is the conventional rotating exci­

tation system with 0.5 response ratio and the second, a fast exciter, 

is a thyristor type, high initial response system, 2.5 response ratio. 

The data for the two types of exciters used in the simulation are 

obtained from references 5 and 98 for the slow and fast exciters, 

respectively. The data together with the appropriate data preparations 

such as potentiometer settings, limiter settings and the exciter 

saturation are described in Appendix A. 

The same range of Kj. and Tp was used in the simulation of the two 

excitation systems. It is important to note, however, as discussed in 

section A of this chapter, that the set of values for Kp and Tp shown in 

Table 6 was chosen on the basis of the slow exciter where the exciter 

pole is very close to the origin (see Figure 18). The exciter pole for 

the fast exciter, however, lies far to the left of the origin. We have 

chosen to use the same range of Kp and Tp for the two exciters in order 

that any differences that may be noted in the results can be attributed 

to the fixed parameters of the excitation systems. 

Four sets of readings were recorded for each of the excitation 

systems. Set one is the operation of the system with no limiting and no 

saturation, NLNS. In the second set the system is operated with limit­

ing but no saturation, LNS. The third set is the operation of the system 

with both limiting and saturation, LS, while in the fourth set the system 

is operated with no limiting but with saturation, NLS. 

In order to investigate the effects of the above on each of the 

values of Tp, and Kp given in Table 6, each set of readings must 
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contain twenty analog computer runs. In each case the system is first 

brought to its full load steady state operating condition, then the 

effect of a 5% step change in the reference voltage, on the output 

variables, particularly the terminal voltage, is recorded. 

The next step is to determine a set of performance indices which can 

be used to compare the eighty strip chart recordings obtained for each 

excitation system. While several authors always give the strip chart 

recordings of the output variables of the systems under investigation, 

there is no general agreement on how to best compare two sets of output 

variables. In this study, we have chosen to compare the system response 

as if it were that of a second order system. Hence the comparison is in 

terms of settling time, percent overshoot and rise time — all of which 

are commonly defined in control system texts (29). A sketch showing the 

definition of the performance indices is given in Appendix A, section E. 

Tables 7 and 8 compare the system response for the two types of 

excitation system considered. The rise time for the system response of 

the slow response exciter is of the same order of magnitude for the four 

sets of readings. Hence the comparison shown in Table 7 does not include 

the rise time. 

The settling time and percent overshoot shown in Tables 7 and 8 are 

compared graphically by plotting them against Kp. 

For a fixed Tp and the percent overshoot is plotted against Ky 

using the four sets of readings, NLNS, UîS, LS and NLS. The plots result­

ing from this consideration are shown in Figures 20 and 24 for the slow 

and the fast exciters, respectively. 
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Table 7. Comparison of results for model I and the lov response exciter 

TP 
No limiting, 
no saturation 

Set- % 
Run tllng over-
no. time shoot 

With limiting 
but no saturation 

Set- % 
Run tling over-
no. time shoot 

With both limiting 
and saturation 

Run 
no. 

Set­
tling 
time 

% 
over­
shoot 

No limiting 
but with saturation 

Set- % 
Run tling over-
no . time shoot 

sec sec sec sec 

400 .015 11 2.00 125 41 5.75 120 71 4.13 110 101 1.90 125 
.020 12 0.70 75 42 1.00 85 72 0.85 85 102 0.60 75 
.025 13 0.80 47 43 0.90 61 73 0.80 60 103 0.85 47 
.030 14 1.00 43 44 1.00 41 74 1.00 40 104 1.00 41 
.035 15 1.10 39 45 1.10 37 75 1.05 37.5 105 1.10 37 

600 .015 16 0.60 100 46 2.40 110 76 1.90 100 106 0.50 100 
.020 17 0.65 55 47 0.85 80 77 0.85 72 107 0.60 57 
.025 18 0.75 43 48 0.75 53 78 0.85 49 108 0.75 43 
.030 19 0.80 39 49 1.00 39 79 1.00 38.5 109 1.00 39 
.035 20 1.05 37 50 1.00 35 80 1.15 34.5 110 1.10 37 

400 .015 21 1.65 80 51 1.90 75 81 2.20 80 111 2.10 80 
.020 22 1.75 70 52 2.10 67 82 2.60 65 112 2.00 ;o 
.025 23 2.00 65 53 2.40 63 83 2.80 61 113 2.20 65 
.030 24 2.25 61 54 2.70 61 84 2.90 59 114 2.60 61 
.035 25 2.80 58 55 2.90 59 85 2.80 57 115 2.70 59 

600 .015 26 1.75 75 56 2.10 75 86 2.05 70 116 1.70 75 
.020 27 1.85 65 57 2.00 63 87 2.10 61 117 2.50 65 
.025 28 2.00 60 58 2.30 61 88 2.30 60 118 2.80 61 
. .030 29 2.20 59 59 2.65 59 89 2.30 59 119 3.10 59 
.035 30 2.40 57 60 2.70 57 90 2.50 57 120 3.30 57 
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Table 8. Comparison of results for model I and the high response exciter 

No limiting. With limiting With both limiting No limiting 
Tp Kp no saturation but no saturation and saturation but with saturation 

Set- % Set- % Set- % Set- % 
Run tling over- Rise Run tling over- Rise Run tling over- Rise Run tling over- Rise 

no. time shoot time no. time shoot time no. time shoot time no. time shoot time 

sec sec sec sec sec sec sec sec 

400 .015 221 0.32 11.0 .10 241 0.45 12.0 .12 261 0.50 10.5 .20 281 0.43 13.5 .10 
.020 222 0.53 15.0 .12 242 0.52 13.0 .13 262 0.60 12.0 .22 282 0.53 15.0 .13 
.025 223 0.62 18.5 .17 243 0.58 18.0 .15 263 0.70 14.0 .21 283 0.62 18.0 .15 
.030 224 0.71 19.0 .18 244 0.68 19.0 .17 264 0.75 17.0 .20 284 0.70 18.5 .19 
.035 225 0.78 20.0 .20 245 0.75 19.0 .20 265 0.80 20.0 .21 285 0.74 19.5 .20 

600 .015 226 0.42 12.0 .10 246 0.46 13.0 .11 266 0.53 13.0 .19 286 0.42 13.0 .10 
.020 227 0.52 15.0 .12 247 0.57 14.0 .13 267 0.60 14.0 .20 287 0.54 15.0 .13 
.025 228 0.61 18.0 .15 248 0.62 18.0 .15 268 0.68 16.0 .21 288 0.62 17.4 .15 
.030 229 0.71 19.0 .17 249 0.70 19.0 .17 269 0.73 18.5 .20 289 0.70 18.5 .18 
.035 230 0.79 20.0 .19 250 0.78 20.0 .19 270 0.78 20.0 .22 290 0.74 19.0 .20 

400 .015 231 0.88 27.0 .14 251 0.90 29.0 .12 271 0.82 21.0 .20 291 0.90 25.0 .12 
.020 232 1.06 29.0 .16 252 1.05 29.5 .14 272 1.07 24.0 .20 292 1.02 27.0 .17 
.025 233 1.20 31.5 .18 253 1.16 31.5 .17 273 1.19 28.0 .20 293 1.19 30.0 .20 
.030 234 1.30 32.0 .20 254 1.28 33.0 .20 274 1.30 31.0 .21 294 1.30 31.5 .22 
.035 235 1.43 33.0 .22 255 1.40 34.0 .22 275 1.42 33.0 .22 295 1.42 32.0 .22 

600 .015 236 0.85 27.0 .13 256 0.87 27.0 .12 276 0.90 21.0 .19 296 0.90 26.0 .12 
.020 237 1.00 30.4 .16 257 1.07 30.5 .16 277 1.03 25.0 .20 297 1.08 29.0 .16 
.025 238 1.10 31.0 .17 258 1.17 31.5 .17 278 1.20 29.0 .20 298 1.20 31.5 .18 
.030 239 1.18 32.0 .18 259 1.30 33.0 .20 279 1.32 32.0 .20 299 1.30 32.0 .20 
.035 240 1.30 33.0 .19 260 1.42 34.0 .22 280 1.42 33.0 .21 300 1.40 32.0 .22 
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For each set of readings, NLNS, LNS, LS and NLS AND the four differ­

ent combinations of Tj, and K^, the percent overshoot is plotted against 

Kp. Figures 21 and 25 result from these considerations. 

Using a similar approach as above, the settling time is plotted 

against Kp. Figures 22 and 26 parallel those of Figures 20 and 24 while 

Figures 23 and 27 are developed from considerations similar to those of 

Figures 21 and 25. 

In order to facilitate visual comparison of the results, the same 

scale has been used in plotting the curves shown in Figures 20 to 27. 

Several observations can be made from Tables 7 and 8 and Figures 20 to 27. 

First, one can compare each figure with respect to the effects of varying 

Tp and K^. Then a cross-comparison of the several figures can be made. 

The following are some of the possible observations: 

1) For the low response exciter, the percent overshoot decreases 

with an increase in Kp whereas it increases slightly for the 

high response exciter (see Figures 20, 21, 24 and 25). 

2) The percent overshoot is comparatively higher in the low response 

exciter than in the high response exciter (see Figures 20, 21, 24 

and 25). 

3) The percent overshoot does not vary significantly with NLNS, LNS, 

LS and NLS operations but in almost all cases the overshoot is 

lower when both limiting and saturation, LS, are included (see 

Figures 20 and 24). 

4) The percent overshoot varies more significantly with Tp than with 

for constant Kp (see Figures 21 and 25). 
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5) The settling time increases with an increase in (see Figures 

22, 23, 26 and 27). 

5) For similar operating conditions the settling time is lower in 

the high response excitation system than in the low response system 

(see Figures 22, 23, 26 and 27). 

7) The settling time is greater when both limiting and saturation, 

LS, are considered than in the other runs NLNS, LNS and NLS (see 

Figures 22 and 26). 

8) For constant Kp, the settling time is more dependent on Tp than 

on (see Figures 23 and 27). 

From the studies described in this chapter it can be said, in 

general, that 

1) Inclusion of saturation and limiting lower overshoot but tend to 

sustain oscillations longer. 

2) The faster response system has better overall performance in the 

range of Kp, Tp and considered. 
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Figure 20. Percent overshoot vs Kp for NLNS, LNS, LS and NLS with low 
response exciter and model I 
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• 0.2, 600 
OO.l, 400 
VO.l, 600 

^ G 9 G 
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T 9 9 c 
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Figure 21. Percent overshoot vs Kp for Tp and of .2/400, .2/600, 
.1/400 and .1/600 with low response exciter and model I 
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Figure 22. Settling time vs Kp for NLNS, LNS, LS and NLS with low 
response exciter and model I 
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Figure 23. Settling time vs Kp for Tp and of .2/400, .2/600, .1/400 
and .1/600 with low response exciter and model I 
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Figure 24. Percent overshoot vs Kp for NLNS, LNS, LS and NLS with high 
response exciter and model I 
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Figure 25. Percent overshoot vs Kp for Tp and of .2/400, .2/600, 
.1/400 and .1/600 with high response exciter and model I 
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Figure 26. Settling time vs Kp for NLNS, INS, LS and NLS with high 
response exciter and model I 
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Figure 27. Settling time vs Kp for Tj. and of .2/400, .2/600, .1/400 
and .1/600 with high response exciter and model I 
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V. MODEL III - SIMPLIFIED LINEAR MODEL 

In this chapter the performance of the simplified linear model, 

model III, is studied using the two excitation systems, the low and high 

response exciters discussed in Chapter IV. After observing the need to 

include damping in the model in section A, machine model IV is simulated 

in section B to determine the amount of damping needed and, with the 

damping thus determined, the performance of model III is studied in section 

C. Section D presents the conclusions that can be drawn from the studies 

in this chapter. 

A. Simulation of Model III Without Damping 

Both the theoretical development of model III and the accompanying 

detailed block diagram have been discussed in section D of Chapter III. 

The analog computer simulation diagram and the potentiometer settings used 

for this model are presented in Appendix B. 

The model was first simulated without the damping feedback path 

indicated by the dashed lines shown in Figure 7 (see Chapter III). 

An analog computer time scaling, a, of 100 was used and the system 

was operated, whenever possible, in slow millisecond (SMS) analog mode. 

Thus one second of the analog computer time corresponds to one second of 

the synchronous machine operation. 

Figures 28 and 29 show the response of model III for the slow and fast 

response exciters, respectively. The extreme left and right portions of 

the chart recordings indicate zero voltages. At A the system is switched 

to operate. The load was applied at point B. Since interest in Av^ is 
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centered around the system response to step changes in and the 

channel for recording Av^ was off prior to point C. A step change in 

Tgj was applied at D and removed at E. Similarly, a step change in 

the reference voltage v^^^ was applied and removed at F and G, respectively. 

Finally, the recorder channels were turned to zero at H. 

Figure 30 shows the response of model III without damping to and 

AVj.g£. In this case the system was at steady state operation prior to point 

A but the chart recorder was off. Thus the values indicated between points 

A and B show the steady state operating condition. A step change in was 

applied at B and removed at C. Points D and E show the application and 

removal of Av^^^' The recorder was returned to zero at F. This figure also 

shows the response of the accelerating torque, 

As shown in Figures 28, 29 and 30, the response of model III, particu­

larly to the step change in the load torque clearly indicates the need for 

the damping feedback path shown in Figure 7 (see Chapter III) since the 

actual machine does not exhibit the oscillations visible in these runs. 

B. Simulation of Model IV with the Assumptions of Model III 

The amount of damping required in simulating the simplified linear 

model, model III, can be determined by simulating the nonlinear model, 

model IV, under the assumptions used in model III. For convenience, the 

assumptions which are not common to the two models are restated here: 

1) Amortisseur effects are negligible. 

2) Armature resistance is negligible. 

3) The flux linkages are constant. I.e. pij; or pX terms are negligible. 
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Figure 28. Response of model III to ATjjj and AV^^^ without damping 
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Since the above assumptions were not used in developing model IV, the 

model can be simulated with and without these assumptions. The analog 

computer representation of model IV and the analog patching changes 

necessary for measuring the damping are discussed in Appendix C. 

1. Simulation of model IV without amortisseur effects 

The simulation of the nonlinear model, model IV, without amortisseur 

effects was performed by making the direct and quadrature axes amortisseur 

resistances, Rjj and Eq, very large. In this case Rg and Rq were increased 

by 100 times their normal values. 

Figure 31 indicates the steps followed to determine the damping 

required. The system was operated in the Fast Second (F Sec) analog mode 

(1.0 second of real time represented by 10 seconds on chart). Point A 

shows when the recorder was turned to operate. At points B and C, AXjj^ was 

applied and removed, respectively. Just before point D the recorder was 

stopped and the values of RJ) and RQ were increased to 100 times their 

normal values. Then at points D and E, Ax^^ was again applied and removed. 

Then with R^ and Rq still 100 times their normal values, a mechanical 

switch connecting appropriate damping into the feedback path was turned on 

and Ax^ was again applied and removed at F and G, respectively. The system 

response observed after connecting the damping was about the same as that 

observed before the assumption of no amortisseur effects was made. This 

indicated that a correct potentiometer setting, from which the damping can 

be calculated, has been determined. 

As shown in runs discussed in Chapter VI, Av^^^ has negligible effect 

on change in rotor speed, Au. 
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2. Simulation without armature resistance 

The condition of negligible armature resistance, r^, is simulated by 

resetting the appropriate potentiometers (see Appendix C) to zero. Figure 

32 shows the results. In this case the system was operated in the Fast 

Second analog mode. The chart recorder was turned on at A and off at H 

while points B-G have similar meaning as their counterpart in Figure 31. 

In this case, however, potentiometers containing armature resistance, r^, 

were set to zero just before point D and, retaining the conditions used 

at points D and E, an arbitrarily small damping was introduced before 

point F. The figure indicates that armature resistance, which is actually 

very small, has negligible effect on the system response to 

3. Simulation with no amortisseur effects and no armature resistance 

Combining the assumptions of no amortisseur effects and negligible 

armature resistance led to a system response identical to that shown in 

Figure 31. This follows from section 2 where it was noted that neglecting 

armature resistance has little or no effect on the system response. Thus 

the damping determined in section 1 for the condition of no amortisseur 

effects survived for the two combined assumptions. 

4. Simulation with constatât flux linkages 

Model IV could not be simulated with the assumption of constant flux 

linkages without saturating several analog computer summing amplifiers and 

integrators. 

The direct axis equivalent circuit of the synchronous machine can be 

represented as shown in Figure 33 (see Appendix C). If pA^ shown in the 

figure equals to zero, then: 
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Figure 33. The direct axis equivalent circuit for synchronous machine 

The operation of the nonlinear model, model IV with and without the 

assumption of constant flux linkages is shown in Figures 34 and 35. The 

model was operated in slow millisecond analog mode. After the system has 

reached steady state, the recorder was switched to operate at A and the 

step change in load torque was applied at B and removed at C. The 

recorder was stopped at D and, using an electronic switch, the integrators 

for computing and were switched to hold. Immediately after this, 
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the recorder was switched on and AT^ was applied at E. Analog computer 

components started saturating at F. The increase in during the first 

second of operation after applying at B is less than 1 volt, 

which is 0.02 per unit, and which is very small compared to the steady 

state value of Thus in terms of relay operation or automatic system 

control, Xj may be assumed constant. 

In each of the foregoing runs a corresponding run for V£ constant 

was made by turning switch Oil to R position (see Appendix C) and setting 

the potentiometer to a constant voltage observed at the steady state 

operation. 

5. Summary of damping required 

The measurement of damping as described in section 3 was performed 

for the two excitation systems and also for Vg held constant at the steady 

state values. The results are summarized in Table 9 where the damping 

represents commonly used units for D (see Appendix C). The values of D 

are higher than normal. This is due to the presence of local load (see 

Appendix D). 

Table 9. Summary of damping required for the assumption of negligible 
armature resistance and no amortisseur effects 

Setting D„»237(P.S.) (D^/ujg)=.628(P.S.) 
of (Per unit torque- (Per unit torque-

Pot 812 sec"l) sec/rad) 

Fast exciter vj varying .2080 49.30 .1305 
V£ constant .2244 53.20 .1410 

Slow exciter Vf varying .2268 53.75 .1425 
V£ constant .2700 64.00 .1695 
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There is obviously a cross-coupling to the voltage controller via 

the exciter but this is relatively unimportant. 

C. Simulation of Model III with Damping Included 

Using the damping determined in section B, the performance of the 

simplified linear model, model III, is studied in this section. The study 

is conducted in four parts: first, a comparison of the simulation with and 

without damping was made; then the response of the model to ±6%^^ and 

±AVref is presented to show some of the nonlinear characteristics of the 

response; thirdly, the response of the model to ATjjj using NLNS, LNS, LS 

and NLS was studied; fourth, a study similar to that performed on model I, 

that is holding constant and applying AVj.gf, is presented. 

1. Performance of model III with and without damping 

Figure 36 shows the response of model III with damping included. The 

figure was obtained under conditions similar to those used in obtaining 

Figure 28. The system response shown in Figure 37 is the same as that in 

Figure 36 except that the fast exciter was used. 

The effect of damping on the simulation of the model is shown in 

Figures 38 and 39, where the system response without damping and then with 

damping is shown for the two types of exciters. 

Figures 40 and 41 show the response of the model to Av^^^ without 

damping and with damping. In this case, the damping has no noticeable 

effect on the terminal voltage. 
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 ̂ A Éî  mi ÉÉ t •«- • t n f' "-|* • * * " * " I •* * * * '* * * 

h 10 sec 
Figure 41. Response of model III to Av^^f without and then with damping 

fast exciter 



www.manaraa.com

79 

2. Response of model III to ~^^ref with LS 

Some of the nonlinear aspects of the system response may be observed 

by recording the effects of +ATjj, +AVj.gf and -Av^g^ on the same 

chart as shown in Figures 42 and 43 for the slow and fast response 

exciters, respectively. The time response of the variables recorded is 

similar for both +ATjj and -ATjjj. However, this is not the case with the 

step change in reference voltage, Av^^j. Each of the four responses of 

Av^ to the change in reference voltage is somewhat different from the 

others. The differences can be observed in terms of the percent overshoot, 

the rise time and settling time of the responses shown. 

3. Response of model III to AT^^ with NLNS, LNS, LS and NLS 

Figures 44 and 45 show the response of model III to AT^ with no 

limiting no saturation (NLNS), limiting but no saturation (UîS), both 

limiting and saturation (LS) and with no limiting but with saturation 

(NLS). For NLNS and LNS the time response Av^ returned to its original 

steady state value of zero. However, for LS and NLS, Av is about 0.05 
tss 

volts, indicating that including exciter saturation leads to a small change 

in the steady state value of the terminal voltage and thereby indicating 

that the analog simulation esdiiblts a small error due to the use of DFG. 

The fact that the steady state value of Av^ is negligibly small 

presents some problem in applying the performance Indices used for Av^. in 

Chapter IV and defined in Appendix A. A strict adherence to the definition 

would mean division by zero. Thus in order to compare the response of 

model III to AT we would have to define a new set of performance indices. m 
I 

I 
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Since the response of to lends itself well for the performance 

indices used thus far this definition is adhered to and no attempt is 

made to compare the response to in terms of the performance indices. 

4. Response of model III to Av^^g with NLNS, LNS, LS and NLS 

Figures 46a and 46b show the response of model III to Av^^^ with 

NLNS, ms, LS and NLS for the slow and fast exciters, respectively. The 

machine was operated at its full load rating and the step change of 5% 

in was not enough to force the amplifier into limiting. Thus for 

this loading condition and the 5% step change the response to NIHS and 

LNS appear to be the same. Likewise LS and NLS are very similar. 

The next step in the study is to perform a series of analog computer 

runs similar to those outlined for model I in Chapter IV. Four sets of 

readings were recorded for each of the excitation systems. Set one is 

the operation of the system with NLNS. In the second set the system was 

operated with limiting but no saturation, LNS. The third set is the 

operation of the system with both limiting and saturation, LS, while in 

the fourth set the system was operated with no limiting but with satura­

tion, NLS. 

Tables 10 and 11 compare the system response for the two types of 

excitation systems considered. The settling time and percent overshoot 

shown in these tables are compared graphically by plotting them against 

Kp. The graphs shown in Figures 47-54 parallel those of Figures 20-27 

discussed in Chapter IV. 
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Table 10. Comparison of results for model III and the low response exciter, T ĵ  constant and a step 
change in 

No 1 limiting. With limiting With both limiting No limiting 
Kp no saturation but no saturation and saturation but with saturation r A Set­ % Set­ % Set­ % Set­ % 

Run tling over­ Run tling over­ Run tling over­ Run tling over­
no. time shoot no. time shoot no. time shoot no. time shoot 

sec sec sec sec 

.2 400 .015 621 5.8 58.0 641 6.0 56.0 661 4.8 45.0 681 3.2 29.0 
.020 622 6.9 57.5 642 6.8 56.0 662 5.5 42.5 682 3.8 30.0 
.025 623 7.7 57.0 643 7.6 55.5 663 6.1 42.0 683 4.0 30.0 
.030 624 8.5 56.0 644 8.4 55.5 664 7.0 42.0 684 4.7 31.5 
.035 625 9.0 55.0 645 9.0 55.0 665 7.8 44.0 685 4.6 33.0 

600 .015 626 5.8 55.0 646 6.0 55.0 666 5.0 45.0 686 3.1 37.0 
.020 627 6.7 55.0 647 6.8 55.0 667 5.8 46.0 687 3.8 38.0 
.025 628 7.5 55.0 648 7.5 55.0 668 6.2 47.5 688 3.9 39.5 
.030 629 8.5 55.0 649 8.5 55.0 669 6.8 47.5 689 5.5 40.0 
.035 630 8.8 55.0 650 9.0 54.0 670 7.5 47.5 690 5.6 42.0 

.1 400 .015 631 13.3 75.0 651 13.5 75.0 671 6.2 59.0 691 3.9 39.0 
.020 632 13.8 74.0 652 14.0 73.0 672 7.1 57.5 692 4.6 40.0 
.025 633 15.5 72.5 653 15.7 72.0 673 8.0 57.0 693 5.0 40.0 
.030 634 16.0 71.0 654 16.2 72.0 674 10.0 57.0 694 5.6 41.0 
.035 635 16.5 70.0 655 16.5 70.0 675 11.0 57.0 695 6.0 42.0 

600 .015 636 12.0 75.0 656 12.0 75.0 676 6.5 62.5 696 5.3 50.0 
.020 637 13.9 73.0 657 14.0 74.0 677 8.2 62.0 697 5.8 50.0 
.025 638 15.2 72.5 658 15.5 73.0 678 9.1 60.0 698 6.5 50.0 
.030 639 16.0 71.0 659 15.8 72.0 679 10.0 60.0 699 7.1 51.0 
.035 640 16.5 70.0 660 16.5 70.0 680 11.0 60.0 700 7.5 52.5 
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Table 11. Comparison of results for model III and the high response exciter, constant and a step 
change in 

No limiting With limiting With both limiting No limiting 

% no saturation but no saturation and saturation but with saturation 
Set­ % Set­ % Set­ % Set­ % 

Run tling over­ Run tling over­ Run tling over­ Run tling over­
no. time shoot no. time shoot no. time shoot no. time shoot 

sec sec sec sec 

.2 400 .015 421 3.4 37.5 441 3.6 35.0 461 3.7 30.0 481 3.6 30.0 
.020 422 4.3 42.5 442 4.5 40.0 462 4.4 32.5 482 4.2 32.5 
.025 423 5.0 46.0 443 5.2 42.5 463 4.8 35.0 483 4.8 35.0 
.030 424 5.5 47.0 444 5.9 45.0 464 5.0 36.0 484 5.1 36.0 
.035 425 5.8 47.5 445 6.1 45.0 465 5.8 37.5 485 6.0 37.5 

600 .015 426 3.5 40.0 446 3.5 40.0 466 3.8 35.0 486 3.5 35.0 
.020 427 4.4 43.5 447 4.6 42.5 467 4.3 37.0 487 4.2 36.0 
.025 428 5.0 46.0 448 5.1 42.5 468 5.5 39.0 488 5.1 37.5 
.030 429 5.3 47.5 449 5.5 45.0 469 6.4 40.5 489 5.5 40.0 
.035 430 5.5 50.0 450 6.0 45.0 470 6.5 41.5 490 7.0 40.5 

.1 400 .015 431 5.8 55.0 451 6.0 52.5 471 5.0 43.5 491 5.2 42.5 
.020 432 6.8 56.0 452 8.1 55.0 472 5.8 45.0 492 6.0 46.0 
.025 433 8.0 60.0 453 9.1 56.0 473 6.7 46.0 493 6.6 46.0 
.030 434 8.8 61.0 454 9.8 56.5 474 7.4 47.0 494 7.2 46.5 
.035 435 9.1 61.0 455 10.5 56.5 475 8.0 49.0 495 8.0 47.5 

600 .015 436 5.8 56.0 456 6.0 55.0 476 5.2 48.5 496 5.2 48.5 
.020 437 6.9 57.5 457 8.0 56.0 477 6.1 50.0 497 6.2 50.0 
.025 438 7.9 60.0 458 9.2 57.5 478 6.6 51.0 498 6.7 51.0 
.030 439 8.5 62.0 459 10.0 58.5 479 8.5 55.0 499 8.3 53.0 
.035 440 9.6 62.0 460 10.8 59.0 480 8.8 56.0 500 9.0 53.0 
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D. Conclusions on Chapter V 

Several conclusions can be made from the studies presented in this 

chapter. First, a comparison of the graphs shown in Figures 20-27 (see 

Chapter IV) to the graphs in Figures 47-54 shows that the conclusions 1-8 

made in Chapter IV with respect to comparing Figures 20-27 are still valid 

for comparing Figures 47-54. Some additional conclusions on Chapter V 

are: 

1) Damping improves the performance of model III. 

2) The assumption of constant flux linkages is valid only for a 

period of about one second after a step change in load is applied. 

3) The terminal voltage returns to its original steady state value 

following a step change in load torque with and without amplifier 

limiting. 

4) As discussed in Appendix D, the damping required to improve the 

performance of model III is a function of the local load, R, 

connected to the machine terminal. 

5) A comparison of Tables 7 and 10 shows that the overshoot observed 

for model I and the slow exciter is of higher order of magnitude 

than those of model III and slow exciter. However, the reverse is 

the case in comparing the settling time. 

6) A comparison of Tables 8 and 11 shows that the settling time is 

longer for model III and fast exciter than model I and fast 

exciter. However, the overshoot Is lower in model I and fast 

exciter than model III and fast exciter. 
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7) From conclusions 5 and 6 it would appear that in general the more 

complicated the machine model, the longer is the settling time 

for a given excitation system. 

8) Inclusion of saturation and limiting lowers overshoot but tends 

to sustain oscillation longer. 

9) The faster response excitation system has better overall 

performance in the range of Kp, Tj, and considered. 

In addition to the above it can be said that model I is somewhat 

optimistic with respect to both overshoot and settling time. The terminal 

voltage in both models I and III are similar in shape and have the same 

steady state values. In general the curves in Figures 20-27 for model I 

are somewhat different from the corresponding ones in Figures 47-54 for 

model III. Most of the curves for model III can be fitted into straight 

lines while those in model I cannot. Since is assumed constant for 

model I the analog recordings do not display any oscillation for changes 

in Vj,g£. As shown by in Figure 38, model III displays high oscillations 

depending on whether damping is included or not. 
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VI. MODEL IV - NONLINEAR MODEL 

The performance of the nonlinear model, model IV, is discussed in 

this chapter using the two excitation systems, low and high response 

exciters. Section A of the chapter analyzes model IV in a way similar 

to that used for model III in Chapter V, section B examines the effect 

of saliency on the model and section C considers the effects of machine 

saturation on the nonlinear model. The conclusions that may be drawn 

from the studies presented in this chapter are given in section D. 

A. General Performance of Model IV 

The general performance of the nonlinear model, model IV, discussed 

in this section parallels section C of Chapter V. Thus model starting, 

loading and response of the model to step changes in both the load torque 

and voltage reference are discussed. 

1. Loading of model IV 

Figures 55 and 56 show the initial response of model IV with the slow 

and fast exciters, respectively. These figures show how the system is 

brought to steady state positions before the step changes in and Vj,gf 

are applied. In order to establish the initial conditions, integrator 210 

(see Appendix C) in which Aw was determined was held at IC by an 

electronic switch. The integrator may be released either before or after 

the load is applied. The extreme left side of the figures represents 

zero. The system is switched to operate at point A and integrator 210 

is released at point B. This release of integrator 210 preceded the 

application of load in Figure 55 and followed the application of load in 
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Figure 56. Step changes in and are applied and removed at points 

D, E, F and G. The recorder is returned to zero at point H. Again, as 

discussed in Chapter V the channel recording Av^. was not on until the step 

changes were being applied. 

The terminal voltage reaches steady state faster with the fast exciter 

than with the slow exciter. However, the overshoot is higher in the fast 

exciter than in the slow exciter. 

These figures can also be compared with the similar ones discussed in 

Chapter V for the linear model, model III. The variables recorded in 

Figures 55 and 56 were chosen to facilitate such a comparison. 

The analog computer was operated in slow millisecond (SMS) analog 

mode for these and all other chart recordings discussed in this chapter. 

2. Response of model IV to ±AT^ and ±Av^gg with LS 

Some of the nonlinear characteristics of the system can be observed 

in the somewhat different responses obtained for the application and 

removal of +AT^, -AT^^, +Av^g^ and -AVj.g£ shown in Figure 57 for the slow 

exciter. Similar responses (not shown) were observed for the fast 

exciter. Here, as in the case of model III, the response Av^ to + Av^^^ 

is like that of a first order system while the responses to the removal 

of +AVj.g£ and -Av^^g are like those of a second order system but with 

different overshoot, rise time and settling time. 

3. Response of model IV to Ai^ with NLNS, LNS, LS and NLS 

Figures 58 and 59 show the response of model IV to A-r^ with no limit­

ing no saturation (NLNS), limiting but no saturation (LNS), both limiting 
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and saturation (LS) and no limiting but with saturation (NLS). The 

comments made in Chapter V with respect to similar figures. Figures 

44 and 45, still apply in this case and no attempt is made to compare 

the response to in terms of percent overshoot, rise time and 

settling time. The responses to AT^ shown in these figures are very-

similar. 

4. Response of model IV to Av^^^ with NLNS, LNS, LS and NLS 

Figures 60 and 61 show the response of model IV to AVj.gf with 

NLNS, I^S, LS and NLS for the slow and fast exciters, respectively. 

As in a parallel discussion in Chapter V, the full load operation being 

considered and the step change in the reference voltage did not force 

the amplifier in the regulating system into limiting and, hence, the 

responses to NLNS and LNS are similar. The difference between both 

NLNS and LNS and both LS and NLS is due to exciter saturation. 

A series of analog computer runs similar to those outlined for 

models I and III in Chapters IV and V, respectively, were performed. 

Tables 12 and 13 compare the responses of model IV in terms of the 

machine terminal voltage for the two types of excitation systems. The 

settling time and percent overshoot shown in these tables are compared 

graphically by plotting them against Kp. The graphs shown in Figures 

62-69 parallel those of Figures 20-27 and 47-54 discussed in Chapters 

IV and V, respectively. 
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Table 12. Comparison of results for model IV and the slow exciter with T constant and a step 
, , M 

change in v f 

No limiting y With limiting With both limiting No limiting 
Tp K no saturation but no saturation and saturation but with saturation 
r A r Set­ % Set­ % Set­ % Set­ % 

Run tling over­ Run tling over­ Run tling over­ Run tling over­
no. time shoot no. time shoot no. time shoot no. time shoot 

sec sec sec sec 

o
 

o
 

C
M
 

.015 721 6.0 47.5 741 5.8 47.5 761 5.9 41.0 781 6.0 42.0 

.020 722 6.9 45.0 742 6.9 45.0 762 6.8 39.5 782 7.0 39.5 

.025 723 7.5 42.5 743 7.8 43.0 763 7.5 37.5 783 7.8 38.0 

.030 724 8.3 41.0 744 8.1 41.0 764 8.0 37.0 784 8.1 37.0 

.035 725 9.0 40.0 745 9.0 40.0 765 8.8 36.0 785 9.0 36.5 

600 .015 726 5.7 46.0 746 5.8 45.5 766 5.5 44.0 786 5.8 45.0 
.020 727 6.5 43.5 747 6.9 45.0 767 6.5 42.0 787 6.7 42.0 
.025 728 7.5 43.0 748 7.6 42.5 768 7.2 42.0 788 7.5 42.0 
.030 729 8.2 41.0 749 8.4 41.0 769 8.2 41.0 789 8.0 41.0 
.035 730 8.9 40.0 750 8.9 40.0 770 8.8 40.5 790 9.1 40.0 

.1 400 .015 731 10.3 61.0 751 10.2 60.5 771 7.5 53,0 791 7.5 55.0 
.020 732 10.5 57.5 752 10.6 57.5 772 8.7 51.0 792 8.6 50.0 
.025 733 11.0 55.0 753 11.2 55.0 773 9.6 48.0 793 9.5 48.0 
.030 734 12.0 52.5 754 12.3 52.5 774 10.4 47.0 794 10.2 47.0 
.035 735 12.5 50.0 755 12.0 50.0 775 11.0 45.0 795 11.1 44.5 

600 .015 736 10.4 61.0 756 10.1 60.0 776 7.5 58.0 796 7.3 58.0 
.020 737 10.7 57.5 757 10.3 57.5 777 8.2 55.0 797 8.5 55.0 
.025 738 11.1 55.0 758 11.2 55.0 778 9.4 52.5 798 9.5 52.5 
.030 739 12.0 52.5 759 12.2 52.5 779 10.5 50.0 799 10.3 50.0 
.035 740 12.8 50.0 760 11.9 50.0 780 11.0 48.0 800 11.2 47.0 
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Table 13. Comparison of results for model IV and the fast exciter with T constant and a step 
change in 

No limiting ' 9 With limiting With both limiting No limiting 
Tp Kp. no saturation but no saturation and saturation but with saturation 

Set­ % Set­ % Set­ % Set­ % 
Run tling over­ Run tling over­ Run tling over­ Run tling over­
no. time shoot no. time shoot no. time shoot no. time shoot 

sec sec sec sec 

.2 400 .015 821 4.2 33.0 841 4.4 33.0 861 4.6 31.5 881 4.7 31.5 
.020 822 5.0 34.0 842 5.0 33.0 862 5.1 32.0 882 5.1 32.0 
.025 823 5.6 34.0 843 5.8 34.0 863 5.7 34.0 883 5.8 32.0 
.030 824 6.2 35.0 844 6.2 34.0 864 6.4 34.0 884 6.2 32.0 
.035 825 6.7 35.0 845 6.5 34.0 865 7.0 34.0 885 6.8 32.0 

600 .015 826 4.4 36.0 846 4.3 36.0 866 4.5 36.5 886 4.4 36.0 
.020 827 5.0 36.0 847 5.1 36.0 867 5.1 36.0 887 5.1 36.0 
.025 828 5.5 36.0 848 5.7 35.0 868 5.7 36.0 888 5.7 36.0 
.030 829 6.2 36.0 849 6.2 35.0 869 6.0 36.0 889 6.2 36.0 
.035 830 6.6 35.5 850 6.8 35.5 870 6.8 36.0 890 6.7 36.0 

.1 400 .015 831 7.2 43.5 851 7.1 44.0 871 5.8 43.0 891 5.9 43.0 
.020 832 8.5 43.5 852 8.4 44.0 872 6.7 42.5 892 6.7 43.0 
.025 833 9.1 43.0 853 9.3 44.0 873 7.7 43.0 893 7.5 43.0 
.030 834 10.0 42.5 854 10.2 43.5 874 8.2 42.0 894 8.1 42.5 
.035 835 11.0 41.0 855 11.1 41.0 875 8.8 41.0 895 8.8 42.0 

600 .015 836 7.3 46.0 856 7.2 48.5 876 6.0 47.5 896 5.7 47.5 
.020 837 8.4 46.0 857 8.3 46.5 877 6.8 47.0 897 6.7 47.5 
.025 838 9.3 45.0 858 9.3 46.0 878 7.5 46.5 898 7.5 46.0 
.030 839 10.2 44.0 859 10.2 44.0 879 8.2 45.0 899 8.1 45.0 
.035 840 11.1 43.0 860 11.0 43.5 880 8.9 44.0 900 8.8 44.0 
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B. Effect of Sallency on Model IV 

The difference between the direct axis synchronous reactance, Xj, and 

the quadrature axis synchronous reactance, X^, may serve as an indicator 

of the degree of sallency in a synchronous machine. 

Table 14. Average values of X^ and X^ in per unit for typical synchronous 
machines 

Synchronous Machine 
Turbo 

generators 
(solid rotor) 

Water-wheel 
generators 

(with dampers) 
Synchronous 

condensers 

motors 
(general 
purpose) 

used in 
this 

study 

& 1.100 1.150 1.800 1.200 1.700 

X, 1.080 0.750 1.150 0.900 1.640 

XQ/XJ 0.981 0.652 0.638 0.750 0.964 

0.019 0.348 0.362 0.250 0.036 

% sallency 1.9 34.8 36.2 25.0 3.6 

Consider the average values of X^ and X^ for different types of 

synchronous machines (4, 62) shown in Table 14. Judging from this table, 

30% sallency may be used to study the effect of sallency. The value of 

30% sallency is not uncommon in the literature. For example, the machine 

used in reference 72 has Xj and Xg of 1.2 and 0.8 per unit, respectively, 

and this corresponds to 33.33% sallency as defined in Table 14. For the 

machine being used in this study, ^f we fix X^ at its supplied value of 

1.70 per unit then X^ required for 30% sallency is 1.19 per unit. Using 

this value the potentiometer settings in which X^ appears are changed 

appropriately (see Appendix C). 
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Figures 70 and 71 show the response of model IV with and without 

saliency effects to AT^ and First, the system without saliency 

effects is brought to full load steady state operation. At point A the 

chart recorder is switched to operate. Thus the values immediately to 

the right hand side of A are the steady state values without saliency 

effects. Both Ax^ and Av^^g are then applied and removed as indicated. 

At point B, the recorder is stopped. The analog computer is then turned 

to its pot set condition and the potentiometer changes necessary for the 

saliency effects are made. The system is restarted and brought to its 

full load steady state condition before the recorder is turned on again. 

Thus the values immediately to the right side of point B indicate the 

steady state conditions which exist when saliency effects are considered. 

Figures 70 and 71 have each been presented in three parts in order 

to show the effects of saliency in as many output variables as possible. 

Part a shows the effects of saliency on the variables used in the 

previous figures. Part b shows the variables immediately affected by 

saliency, at least insofar as potentiometer settings are concerned. Part 

c shows saliency effects on some other output variables. 

From these figures it would appear that the effect of saliency is 

more noticeable on the steady state quantities than on step changes in 

and Vref. 

C. Effect of Machine Saturation on Model IV 

As mentioned in Chapter II, several studies emphasizing the need to 

represent machine saturation in stability studies have been presented in 

the literature. In Chapter II it was also noted that several methods of 
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representing machine saturation have been proposed. The lumped-parameter 

equivalent circuit being used does not permit precise representation of 

the saturation phenomena. However, a reasonable model can be obtained by 

treating the direct axis mutual flux linkages, and its quadrature axis 

counterpart, X^q, as being saturable. These two quantities appear in the 

direct and quadrature axis equivalent circuits as shown In Figure 72. 

The method used in obtaining d-q-axes saturation is similar to those 

used in references 10, 14 and 40, and it is a modified form of that 

recommended for the exciter saturation function (53). As indicated in 

Table 14 under the discussion on saliency effects, the degree of sallency 

for the machine being studied is 3.6%. Thus the q-axls saturation curve 

will be 3.6% less than the d-axis saturation curve which is supplied by 

the machine manufacturer. Hence for all practical purposes we can assume 

that the two saturation curves are the same. See Appendix C for the 

saturation curves used and for simulation considerations. 

It Is to be noted that the value of 6 measured is negative. As shown 

in Appendix D, this is due to the fact that an R of 0.5 per unit has been 

used which places a large load on the machine terminal. The system voltage 

response to both and Av^^g are in the proper direction for this value 

of load. 

The response of model IV to 6%^^ and Av^^^ with and without saturation 

is recorded in three ways: model IV with d-axls saturation, model IV with 

q-axis saturation and model IV with both d- and q-axes saturation. The 

results are shown In Figures 73-77 for the two types of exciters. The 

left half of each figure represents response without saturation effect 

while the right half is the response with the saturation effect. Part a 
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of the figures records the variables that would permit comparison of the 

response with those in the previous discussion while part b records the 

flux linkages in the region where saturation is represented. 

As shown in Figures 73 and 74 saturation in the d-axis lowers the 

overshoot in the terminal voltage considerably. The steady state values 

of are in the linear region of the saturation curve where the satura­

tion function g(X ) is zero. Hence, as shown in Figures 75 and 76, 
AQ 

there is no difference in the response of the system with and without 

Q~ûxis saturation for the loading used. The combined effect of both 

d-q-axes saturation which is shown only for the slow exciter is therefore 

the same as that given by the d-axis saturation alone. 

D. Conclusions to Chapter VI 

Several conclusions can be drawn from the studies described in this 

chapter. Such conclusions can be obtained by comparing the studies made 

in this chapter with those in Chapters IV and V in addition to specific 

conclusions resulting from this chapter alone. 

A comparison of Figures 20-27, 47-54 and 62-69 shows that the 

conclusions 1-8 made in Chapter IV are still valid for model IV. 

Conclusions 3-9 stated in section D of Chapter V still apply for 

model IV. 

IVo additional conclusions on Chapter VI are: 

1) Machine saliency changes some of the steady state output variables 

of model IV. 

2) Machine saturation lowers the overshoot ojÇ the terminal voltage 

for step changes In and Av^gf. 
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E. A Comparison of the Models 

The analyses presented in Chapters IV, V and VI not only show the 

effects of the system nonlinearities considered but can also be used to 

compare the three models, models I, II and III discussed in the analyses. 

Below are some of the possible qualitative comparisons of the models. 

Model I, the first order approximation of a synchronous machine, is 

the simplest to analyze and the least accurate model but it cannot be used 

to study the effects of load. Model II describes only the dynamics of the 

rotor and ignores the machine electrical characteristics. Model IV is the 

most complicated but also the most accurate of the three approximate models. 

The general observations and conclusions on the comparison of the 

percent overshoot and settling time are the same in the three models. 

However, the relative magnitudes of these performance indices vary from 

one model to the other for similar analog computer runs. 

The rise time in the three models appears to be too short for any 

meaningful comparison. 

Model I is a one input system while model III is a two input system. 

This fact explains the relative usefulness of the models and why response 

of model III more closely approximates that of model IV than model I. 

Model IV can be used to investigate the validity of the various 

simplifying assumptions used in developing simpler models. 

In addition to these qualitative comparisons, one can record the 

response of the variables that are observable in the three models, like 

the change in the terminal voltage for example, in the same figure to 

allow a visual comparison. 
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VII. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

A. Conclusions 

The results of the study described in this thesis show that for a 

synchronous machine connected to an infinite bus through a transmission 

line the inclusion of exciter saturation and amplifier limiting lowers 

overshoot but tends to sustain oscillations longer. 

In the range of Kp, Tj, and considered, the faster response 

excitation system has better overall performance than the slower response 

excitation system. 

Depending on the simplifying assumptions made, several models of the 

synchronous machine can be constructed. In this respect it was found that 

the assumption of constant flux linkages is valid only for a period of 

about one second after the occurrence of a disturbance. 

The inclusion of damping terms in linear models improves the 

performance of the model and makes the response more closely resemble the 

performance of the actual machine as represented by a full nonlinear model. 

It was observed that the settling time tends to become longer as the 

models become more complex. This may be accounted for by the fact that 

the effect of a step input passes through more circuit elements. The more 

complex representations have eigenvalues close to the origin which are 

almost impossible to change by the usual compensation techniques. 

The effect of saliency is negligible in the transient response to a 

step change in load torque or voltage reference, but saliency does make a 

noticeable difference in steady state values of certain variables. 
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Machine saturation lowers the overshoot of the terminal voltage for 

step changes in the load torque and voltage reference. 

B. Suggestions for Future Work 

The analyses presented in this study show, among other things, the 

importance of using different machine models in system studies in the area 

of power system stability and control. This approach can be pursued 

further and several other models can be developed such that, depending on 

the nature of a particular study and the degree of accuracy desired, a 

particular model can be used. 

The limitations or the extent of validity of the several assumptions 

usually made in developing machine models can be further investigated. 

This study also shows the importance of representing amplifier 

limiting and saturation on both the exciter and the machine. More accurate 

representation of saturation can be developed and the effect on the system 

can then be studied. For example, one can consider separately each of the 

saturations existing in the alternator (see section D of Chapter II). 

Also, since limiting and saturation are by no means the only nonlinearities 

in the system, several types of system nonlinearities can be considered 

(see section B of Chapter II). 

The results of the study presented in this thesis indicate that 

stability limits obtained without including the effect of nonlinearity 

may be on the pessimistic side. Therefore, studies can be made to evaluate 

the degree of discrepancy existing between stability studies neglecting 

nonlinearities and those which include them. As mentioned in Chapter II, 

most of the present day stability studies neglect many of the 
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nonlinearities. The effects of including the regulating system and 

machine saturation on Lyapunov's methods, Popov's method and Zubov's 

method, all of which have been applied to power system studies, may be 

interesting areas to pursue. 

The study presented in this thesis considered a regulated machine 

connected to an infinite bus through a transmission line. Similar studies 

can be made for multimachine systems. This may, however, necessitate 

the use of the digital computer rather than the analog computer depending 

on the complexity of the machine model being used. 
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X. APPENDIX A. THE EXCITATION SYSTEMS 

A. Derivation of Model I 

The rotor or field winding voltage of a synchronous machine without 

damper windings can be written as (5, 33): 

where 

subscript f denotes field winding, 

subscript d denotes direct axis, 

and letters v, i, r, L, and M, respectively, have their usual 

meaning of voltage, current, resistance, self-inductance and 

mutual inductance. 

The stator currents can be neglected if we assume that the machine 

is lightly loaded or that the generator is operating open-circuited. Then 

the magnitude of the direct-axis current component 1^ will be negligible 

and the last term of Equation A-1 can be neglected: 

[A-1] 

lA-2] 

Also under the no load condition, the stator voltage in phase "a" of 

the machine can be written as (33): 

[A-3] 

where 
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yjl 

w = rotor speed 

and subscript o refers to the no load operation. 

Both the terminal voltage and the generator emf are equal under no 

load condition and hence: 

Ivl = IEI = [A-5] 
VT 

Take Laplace transform of Equations A-2 and A-5 and solve for the 

transfer function: 

. , WM I (S) 
|V|(S) = —= [A-6] 

VT 

Vf(S) = (rf + SLf)ig(S) [A-7] 

IVKS) ^ "MF ^ "MF 1 A 

+ SLF] 1 + S(% ^ 
RF 

[A-8] 

where 

"G = ^DO = ^ 

[A-9] 

Eouation A-8 is the desired transfer function for machine model I. 
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B. Excitation System Transfer Functions 

The main components of the excitation system are potential transformer 

and rectifier, voltage comparator, amplifier, exciter and compensator 

which in this case is a rate feedback compensator. The following is a 

brief presentation of the mathematical representation of the various 

components (5, 33, 116). 

1. Potential transformer and rectifier 

This component of the excitation system can be represented by a first 

order system whose transfer function is: 

""DC % 
VT 1 + ST* LA-10] 

where 

is the regulator input filter gain, 

T^ is the regulator input filter time constant, 

v^ is the generator terminal voltage, 

Vj^ is the rectified output voltage of the component. 

2. Voltage comparator 

The voltage comparator compares the terminal voltage with a reference 

voltage. If the excitation system had a feedback compensator or any other 

auxiliary signal the compensating voltage v^^ is also fed into the 

comparator. The error voltage v can therefore be expressed as: 

^E = VREF " ̂ DC " ^ST 
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3. Amplifier 

This device which may be a rotating, magnetic or electronic amplifier 

can be characterized by a gain factor K^, a time constant T^ and a 

transfer function of the form: 

— = [A-12] 
VG 1 + ST^ 

If amplifier saturation is taken into consideration, it can be 

represented by limiting: 

'B.IN ' "R ' 'MAX "^""3 

4. Exciter 

This is basically an amplifier and has a transfer function similar to 

that in Equation A-10 or A-12. However, if exciter saturation is taken 

into consideration, the saturation factor Sg enters into the transfer 

function and the exciter equation becomes: 

~ SGVF 
~ Kg + STg lA-14] 

5. Rate feedback compensator 

This device can be a stabilizing transformer (33). A stabilizing 

current i^^ flows in the primary winding to give the relation: 

DIGT 
v„ = Ri ^ + L-

R St dt 

The transformer output can be expressed as: 



www.manaraa.com

159 

di 

St ~ dt 

Hence the transfer function is: 

^ST _ SM _ M S A SKP 
R + SL R 1 + si 1 + STp 

[A-15] 

Combining Equations A-10 to A-15 leads to Figure 16 presented in 

Chapter IV. 

C. Excitation System Parameters and Saturation Function 

The parameters used in simulating the excitation systems are shown 

in Table 15. The slow excitation system contains an amplidyne voltage 

regulator having a response ratio of 0.5 and the fast excitation system 

is a rotating rectifier exciter with static voltage regulator having a 

response ratio of 2.23. The two excitation systems are from references 

5 and 98, respectively. Some of the parameters, saturation and regulator 

limiting, shown in Table 15 were not given by the references. The values 

of Sg used for the two excitation systems are: 

S_. = 0.95 [A-16] 
Emax 

=E0.75max= "^""1 

Using a method suggested in IEEE Committee Report (52), the corres­

ponding regulator limiting is computed. 
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'Rmax ~ 3.18 per unit for the slow excitation system 

= 8.68 per unit for the fast excitation system. 

Table 15. Excitation system parameters 

Symbol Slow exciter Fast exciter 

K. 

KR 

K. 

V. Hmax 

'Emin 

R 

Kr 

Emax 

E 0.75max 

""FDmax 

T, 

T 

G 
I 
do 

Variable 

0 .1  

0.5 

-0.05 

Variable 

Variable 

3.18 per unit 

-3.18 per unit 

0.05 

1.0 

0.95 

0.22  

3.50 per unit 

1.0* 

1.0* 

5.9 

Variable 

0.02 

0.015 

1.0  

Variable 

Variable 

8.68 per unit 

-8.68 per unit 

0.005 

1.0 

0.95 

0.22 

4.45 per unit 

1.0* 

1.0* 

5.9 

^Values used for convenience. 
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1. Saturation curve for the slow exciter 

The Sg given in Equations A-16 and A-17 and the no load saturation 

curve given for the machine (see Appendix C) are used to sketch an exciter 

saturation similar to that in Figure 78. For values of E^^ greater than 

that at point C on the no load curve, the corresponding field current has 

two components : a linear portion determined by the distance from the 

axis to the air gap line, and a nonlinear portion determined by the 

distance from the air gap line to the no load saturation curve. This 

nonlinear portion can be expressed as (82): 

B (VF - 0.8) 
= AGE G [A-19] 

An alternative method of calculating Sg suggested by the IEEE 

Committee Report (52) is shown in Figure 78. The Sg obtained with 

Equation A-19 compares very well with that obtained with the alternative 

method (116). 

Substituting the values chosen for Sg^ and S^ o.75max ^FDmax 

of 3.50 per unit into Equation A-19 and solving the resulting simultaneous 

equations give 0.0102 and 1.68 for Ag and Bg, respectively. Hence the 

applicable equation for Sg is: 

Sg = 0.0102el-**(Vf - o.a) 

= 0.00267E^''®'£ [A-20] 

The calculation of Sg using Equation A-20 and the required SgV^ 

are shown in Table 16. The curve of SgV^ versus v^ used in setting the 

Diode Function Generator on the analog computer is given in Figure 79. 
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Figure 78. Calculation of exciter saturation 
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Figure 79. Curve used to set DFG for the slow exciter 
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Table 16. Calculation of SgV^ for the low response exciter 

V£ per unit 1.68vf gl.68vf 
^E SgV£ per unit 

0.0 0.000 1.000 0.00267 0.000000 

0.1 0.168 1.183 0.00316 0.000316 

0.5 0.840 2.320 0.00620 0.003100 

1.0 1.680 5.350 0.01430 0.014300 

1.5 2.520 12.400 0.03310 0.049650 

2.0 3.360 28.800 0.07700 0.154000 

2.5 4.200 67.000 0.17900 0.447500 

3.0 5.040 154.000 0.41100 1.233000 

3.5 5.880 360.000 0.96000 3.360000 

2. Saturation curve for the fast exciter 

Substituting the values chosen for and Sg o.75max ^FDmax 

4.45 per unit into Equation A-19 and solving the resulting simultaneous 

equations give 0.00785 and 1.318 for and B^, respectively. Hence the 

applicable equation for Sg is ; 

SG = 0.00785EL'31G(VF " 0.8) 

= 0.00272el'31Gvf [A-21] 

The calculations of Sg using Equation A'-21 and the required SgV^ are 

shown in Table 17. The curve of SgV^ versus v^ used in setting the Diode 

Function Generator on the analog computer is shown in Figure 80. 
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Figure 80. Curve used to set DFG for the fast exciter 
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Table 17. Calculation of SgV^ for the high response exciter 

Vj per unit 1.318vf EL.318vf SE SgVf per unit 

0.0 0.000 1.00 0.00272 0.0000 

1.5 1.975 7.15 0.01945 0.0292 

2.0 2.640 14.00 0.03810 0.0762 

2.5 3.300 27.20 0.07400 0.1850 

3.0 3.954 52.00 0.14150 0.4240 

3.5 4.610 100.00 0.27200 0.9520 

4.0 5.270 194.00 0.52700 2.1100 

4.2 5.540 255.00 0.69400 2.9200 

4.5 5.930 375.00 1.02000 4.5800 

5.0 6.600 730.00 1.36000 6.8000 

D. Simulation of the Excitation Systems with Model I 

The analog computer setup and the potentiometer settings required for 

the simulation of the two excitation systems with model I are given in 

this section. 

It is considered appropriate at this point to give a general outline 

of the simulation setup used on the EAI 8812 analog computer. The three 

models simulated are all patched on the board at the same time and with a 

minimum of changes in the patching each of them can be simulated without 

disrupting the patching of the other models. 

The general patching diagram can be summarized with a modified form 

of Figure 16 shown, in Figure 81. 
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OC 

REGULATOR 

GENERATOR 

AMPLIFIER 
EXCITER AND 
RATE FEEDBACK 
COMPENSATOR 

Figure 81. A block diagram of the simulation setup 

Point A indicates where the signal -VF is connected to the machine, 

in this case the input to a particular machine model. Point B is where 

the machine or model output is connected to the patching setup to record 

the voltage response and point C indicates where the regulator is connected 

to the machine output. Thus by changing these three connections, any 

model can be readily simulated. In the case of model I, which is presently 

under consideration, the patching diagram is shown in Figure 82a. Note 

that inverter 613 is required only for the slow exciter. 

The settings required for simulating Figure 82a for the two excita­

tion systems are given in Tables 18a and 18b and 19a and 19b. Table 20 

shows the typical settings for the various run numbers indicated in Tables 

7 and 8 of Chapter IV. The table shown is that used for simulating model 

I with no amplifier limiting and no exciter saturation (NLNS). 
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Figure 82a. Simulation diagram showing slow exciter with rate feedback and model I 
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Table 18a. Pot. settings for the simulation of model I with the slow 
exciter 

Pot. Amp. Value X 
Pots. setting gain Variable Value Scaling scaling 

600 K^/5000 10 lOK^ 1/100 1/50 Kj/500 

601 .02 10 1/TJ 2 10/100 20/100 

602 .1 1 L/I^ 10 1/100 1/10 

603 .02 1 I/IE 2 1/100 2/100 

611 .0290 1 
"ref 

5% full load 

612 .5900 1 'ref Full load 

613 .001 1 |KEI/TE .1 1/100 .1/100 

700 .02 10 1/IJ 20 1/100 1/5 

701 .01445 10 TR 20/yjJ 50/100x40 1/4^3" 

702 .04 1 1 40/1000 4/100 

703 .01 1 I/TQ 1 1/100 1/100 

800 .02 1 %1 1 100/100x50 1/50 

801 l/20Tp 10 1/TY 50/100 l/2Tp 

802 10 50/10 5Kp/T^ 

Table 18b. Settings for the 10-segment DIG #204 

1 2 3 4 5 6 7 8 9 10 

""F = X 0 10 15 20 25 30 32 34 35 37 

S v_ = Y 0 0 0.49 1.54 4.475 12.33 18. 55 27.2 33.6 50 
E f 

0.49 1.54 4.475 
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Table 19a. Pot. settings for the simulation of model I with the fast 
exciter 

Pots. 
Pot. 

setting 
Amp. 
gain Variable Value Scaling 

Value X 
scaling 

600 K./IOOO 
A 

10 50K^ 1/100x1/50 K^/100 

501 .667 10 1/TE 66.7 10/100 6.67 

602 .5 1 1/T 
A 

50 1/100 1/2 

603 .667 1 1/IE 66.7 1/100 2/3 

611 .0290 1 5% full load 

612 .5900 1 "ref Full load 

613 .667 1 66.7 1/100 .667 

700 .2 10 1/IU 200 1/100 2.0 

701 .1445 10 h 200/y[3 50/100x40 1.445 

702 .04 1 1 40/1000 .04 

703 .01 1 1/TG 1 1/100 .01 

800 .02 1 K31 1 100/100x50 1/50 

801 l/20Tp 10 1/Tj. 50/100 l/2Tp 

802 KP/2IP 10 50/10 5Kp/Tp 

Table 19b. Settings for the 10-segment DFG #204 

1 2 3 4 5 6 7 8 9 10 

^f = X 0 15 20 25 30 35 40 42 45 50 

^E^f = Y 0 .292 .762 1.85 4.24 9.52 21. 1 29.2 45. .8 68 
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Table 20. A sample table of pot. settings with run numbers 11-30 

Run Tp Pot. 801 K. Pot. 600 Kp Pot. 802 
no. l/20Tp ^ Kj^/5000 Kï./2Tp 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

. 2  ,2500 400 .0800 

600 .1200 

.015 

.020 

.025 

.030 

.035 

.015 

.020 

.025 

.030 

.035 

.0375 

.0500 

.0625 

.0750 

.0875 

.0375 

.0500 

.0625 

.0750 

.0875 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

,5000 400 ,0800 

600 .1200 

.015 

.020 

.025 

.030 

.035 

.015 

.020 

.025 

.030 

.035 

.0375 

.0500 

.0625 

.0750 

.0875 

.0375 

.0500 

.0625 

.0750 

.0875 
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£. Definition of Performance Indices 

- OVEWHOOT 1.10 

H 

0.10 

RISE TIME 

SETTLING TIME 
T s 

Figure 82b. Sketch showing the definition of performance indices used 

Figure 82b shows how the performance indices used in Chapters IV, V 

and VI are defined. 
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XI. APPENDIX B. LINEAR MODEL 

A. Mathematical Derivation of Model III 

The assumptions made in developing model III have been discussed in 

section D of Chapter III. This section of Chapter XI deals with the 

mathematical manipulations performed on Equations 2-11 given below, to 

obtain the linearized equations used in model III. 

By eliminating the terms due to the assumptions from the machine 

equations (see Appendix C), the system equations for this model as given 

in Chapter III are found. These equations, listed here for convenience, 

are: 

V: . V2 + V2 [2] 

-^D= \ = "VQ [3] 

Vq = Ad = *q - Vd [4] 

^ - 3%)ID 

^E = VQ 

id = [eq - Vg cos 6]{[Xg + Xq]/[B| + (Xg + X^)^]} 

- Vg sin 6 + (Xg + X^)^]} [7] 

IQ = - VB COS ÔHVI®! + 

+ Vg sin 6 {[Xg + X ]/[R| + (3% + X )^]} [8] 
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\ • VFD - % - V^D 

'  ® F D - W F D  : I O '  

T_ - T 
m e MËÎI [11] 

DT^ 

Using subscript "o" for the operation at the quiescent point and 

"A" for a small increment the above equations can be linearized as 

follows. 

Linearize Equation 2: 

IO + ' 'L + 'L + ^'DOV + V + \o\a + V 

"l - 'DO + IO TB-LL 

'do , "ao 
'T4 - ~ 'D4 + V V [B-2) 

to to 

Linearize Equation 3: 

~^DO ~ ^DA ~^Q^QO ~ ^qlqA 

""do ° "Wo :B-3] 

-'DI = 

Linearize Equation 4: 

\A ®qo ®qA " *d^do ~ ^d^dA 

^qo = ®qo - Xd^do [B-5] 
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v„. = e - X,i, 
QA qA d dA 

Linearize Equation 5; 

®qo " ®qo •*• " ̂ d^^do 

» . \ 
e. 

Linearize Equation 6: 

^EO + - <®QO + "QO + IQA) 

= e i + e i , + e i + e .i . 
qo qo qo qA qA qo qA qA 

T = e 1 
eo qo qo 

^®A ^QO^QA ^QA^QO 

Linearize Equation 7: 

Define D = %% + (Xg + 

(IDO + ID*) " ^®QO + ®QA ~ ^O 

- Vg(sin 5g cos 6^ + cos 6^ sin 6^)^ 

XP+XN , I 
= (\o • ^o)-^ + (SqA + Vg sin 

- V-R sin 6 - V- 6 cos 6 
a o J) B A o^D 
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XP.+X„ RP 
^DO = (SQO -

^dA = (=q + Vg 5^ sin - Vg cos 

Similarly the linearized forms of Equation 8 are: 

J? X +x 
\o = (Sqo - Vg cos 6^)^ + Vg sin SQC-̂ ) 

V " (SqA + ^B '^A sin 6^ cos 

Linearize Equation 9: 

<o + ' ̂ai<-hio + Ifdi) - <^d - 4) «do + w 

%o " ' ('^D - V^DO 

f t 

\A ~ \D^FDA " ^^D ~ ^D^^DA 

Linearize Equation 10; 

° ^FDO ""'"A - ̂ D'^FDO W 

T* IFÀO = e - X i 
do dt fdo \d fdo 

r de' 
T SO — Y -F 
do dt fdA ad fdA 

Linearize Equation 11: 

(^MO + ""MA^ " (TEO + ^EA^ = ^("^O + 

V O - ' E O  =  

'MI -
at 
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Starting with Equations B-2, B-10 and B-16 the other linearized 

equations are repeatedly substituted to obtain simplified equations for 

V V ^EA FOLLOWS. 

Substitute B-4 and B-6 for and respectively, into Equation 

B-2 and simplify the result. 

VtA = _do + _go VqA [B-2] 

^TO ^TO 

''TA = ^ ^ - hW 
to to 

+ XQ 'O + <=°= ®O'^4 

Substitute Equation B-12 for i^^ in Equation B-8 and simplify the 

result. 

V = V + [B-81 

• V + - %D)[(GQA + % ^ 

+ V3 (X,-X;)[(^) SLNS^-^COS 6„]S, 
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Rearranging the above to solve for e^^: 

i[D - «,-X4)(W'V • V + :i' «. " ̂  

Define A - D - (X^ - X^) (Xg + X^) 

K| + (XJ + - (X^ - X^XXJ + XQ) 

+ (%E + ^ P-22] 

Then 

\ ' A % [(V4' «0 - '="= «.'«A »-"L 

Substitute Equation B-23 for e^^ in Equation B-21 and simplify the 

result. 

"TI • ^ ^ VB «0 •" ̂  """ '°)'A 

+ ̂  'O • 'O)'A 

% «0 - \ 

^tA A ' ' V;o 1' "d A "-qA 

+ ̂  \ 'b KW «0 - % :°: S.]', 

(Equation continued on next page) 
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- ̂  h 'B [<VV «.'«A 

+ ̂  VB 'O + "=® «OL^I 

V . , RP XP.+X„ 
+ ̂  % ̂D" ^ *O]*A [B-24] 

V j  
In Equation B-24, consider the terms containing both —- and 6 , 

^TO A 
define it as and simplify. 

V  R (X ~X') 

^51 = ^ \ D^~V^B [(^+^Q) ^ - h *O]*A 

V  DO RP XP+X 
+ 7^ VB ^ + ~D"^ COS 6^]6^ 

5. . . V^K r nr 
+ T. Sin 0 + cos o^]6 

D O D O A 

SI - ^ R «0 + (V^D) '="= *.]*& IB-25] 

V 
Similarly, in Equation B-24, consider the terms containing both —^ 

^TO 

r 

and 6^, define it as and simplify. 

K = lao x'Vg [& cos « - sin 6 ]6 
52 Vj-Q d B D o D ° ^ 

- ̂  h Tg [(V\) sin ô„-ïj cos 5„!6^ 
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K„ = Zgo x' & [R cos - (Xp+X^) sin 6 ]6, 
V(.Q °A E o q OA 

Define K5 â (K;i + K,,) 

- ̂  a [Ej sin «0 + (XE + %;> cos «,]«A 
'to 

+ las. x' [R cos 5 - (X_ + X„) sin 6 ]5, [B-26] 
v ^ A  o  J i q  o A  
^to " 

Referring to Equation B-24 we observe that includes all the 

coefficients of and thus to complete the simplification we can define 

the coefficient of e' as: 
qA 

° 'to * "to " 

Therefore, Equation B-24 becomes: 

^tA = VA+V^A [B-28] 

Solve Equation B-16 for i_,.. 
loA 

= ^ad'fdi - "d -

ifdi - + «d -

Substitute Equation B-29 for i^^^ in Equation B-18 and then substitute 

for ij^ in the resulting equation: 

^do "dt~ " ®fdA ~ ̂ ad^fdA 
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^do ~dt^ ®fdA ®qA " ~ ̂ d^^dA 

SfdA - ®qA " (^d ~ V^^®qA + "^A 

— — "cTA 
cos 6 6.} 

Substitute B-23 for in the above equation and simplify the 

result. 

<o ̂  = »fdA - V - «. «d - \ 

+ (& - <> C"» '.«A - C'a -

Î C +  ̂»Q-<' K +̂XQ) «0 - h "= «.]«.) 

= ^fd." 

- r " ''à) % + \) =i° «.«a 

+ ̂  ffd - ''d^ '.«A 

Rearranging the above: 

de SA. „ «d-^d't^^V. . 
do dt 

+ [1 + •]e' 
qA -fdA 

+ TÏ (Xj - Xd) [RE cos 6o - (Xg + Xq) sin 6^]6^ [B-30] 
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Take Laplace transform of Equation B-30 and simplify the result. 

•'•V, -... 

Multiply the aboVe by K^, where is defined as: 

- [1 + (Xj - X^)(Xe + Xq)]"l 

A ; 
Define ^ (X^ - X^) [-Kg cos 6^ + (Xg + X ) sin 6^] 

Then, 

[1 + - S'fdi - SVA 

or 

'̂ 3'f dA 

^ 
t 

®qA " 1 + ST' K, 1 + ST* K, 

Substitute Equations B-14 and B-23 for 1 , and e , respectively, 
qA qA 

in Equation B-10 and simplify the result. 

- Vqi-'Vqo 

" °qo'<°q4 + ' + % "A °°® ®o ^ 1 + ̂ qsV 
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% 
I 

V»e + 'B'ao ,„2 

^ei 

+ (Xj,+X^)(Xj+X^)l cos 6,])«A 

= {!aA + [1 + (yx^)(x^-x;)] 

+ tCX^-X^)(Xj.+X^) sin S„ - Rg(X^-X^) COS «,]«, 

+ t% =1" ̂ o + (%) "="= S^l«4 

••• = Kl«A + KsSqa [B-32] 

where 

Kl = ̂  «1» «0 - 'o' 

V e 
+ [Rj. sin 6g + (Xg+X^) cos 6^] [B-33] 

•=2 = '*-34: 

In summary, the simplified equations involving e^^ and 5^ are 

- Vi-'Vqi (B-2*] 

e\ = K- 1%) tB-311 
qA 3 1 + ST, 

do 3 
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2 V 
[B-32] 

The torque equations necessary to complete the model are developed 

in Appendix C and are presented here for convenience. 

5^ = dt radians [B-34] 

[B-33] 

where 

A 
[B-35] T a 

Equations B-28, B-31 to B-34 lead to the block diagram shown in 

Figure 83 with the subscript A's deleted. 

The calculation of the constants to Kg defined in section A and 

potentiometer settings used in simulating model III are discussed in 

this section. 

A complete list of data for the synchronous machine as given in 

references 5 and 116 is presented in Appendix C. Using the machine data 

and a computer program developed in reference 116, the constants to 

Kg are determined. Table 21 gives a summary of both the input data and 

the output of the computer program. 

A block diagram of model III with the excitation system is shown 

in Figure 84. The analog computer simulation diagram of the block diagram 

is shown in Figure 85. Here the point A discussed in section D of 

Appendix A corresponds to the output of integrator 601, point B is the 

B. Simulation of Model III 
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Figure 84. Block diagram for model III with the excitation system 
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Table 21. Summary of the input data and output of the computer program 

Machine data and line parameters 

% 0.02 

0.40 

1.70 

0.15 

1,64 

Initial conditions for the machine 

Single phase power output 1.000 

Single phase var output 0.620 

Infinite bus voltage (ABC) 1.000 

Terminal voltage (odq) 2.031 

Direct axis current -1.591 

Quadrature axis current 0.700 

Direct axis terminal voltage -1.148 

Quadrature axis terminal voltage 1.675 

Delta, angle from infinite bus to q--axis in degrees 53.750 

Linearized machine constants 

% 4.8866 

K2 2.6731 

K3 0.2620 

K4 3.9067 

K; -0.8004 

K6 0.5958 
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output terminal of inverter 230 going into gain 1 input of summing 

amplifier 223 and point C is the output of the inverter 230 going into 

the high side of potentiometer 701. 

Tables 22 and 23 show the potentiometer settings used in simulating 

model III with slow and fast exciters, respectively. The lower portion 

of the two tables is for machine model III while the upper portion 

corresponds to the two exciters. The settings for the function generator 

and the amplifier limiting are as discussed in Appendix A. 

Figure 86 shows the steady state voltages of a sample run made with 

the fast exciter and with both limiting and saturation represented. 
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Table 22. Pot. settings for simulation of model III with the slow exciter 

Pots. 
Pot. 

setting 
Amp. 
Bain Variable Value Scaling 

Value X 
scaling 

600 K^/5000 10 lOK^ 1/100x1/50 K^/500 

601 .02 10 1/TE 2 10/100 20/100 

602 .1 1 1/T^ 10 1/100 1/10 

603 .02 1 I/TE 2 1/100 2/100 

611 .0290 1 A^REF 5% full load 

612 .5900 1 ^ref Full load 

613 .001 1 .1 1/100 .1/100 

700 .02 10 i/ij 20 1/100 1/5 

701 .0145 10 20/y[J 50/100x40 1/4 VR 

800 .02 1 1 1 1 100/100x50 1/50 

801 l/20Tp 10 1/IP 50/100 l/2Tp 

802 

CM 

10 50/10 5%/TP 

020 .0017 1 1/Tdo .1693 1/100 .001693 

021 .0065 1 .647 1/100 .00647 

022 .2673 10 K2 2.6731 1 2.6731 

023 .1 1 ^m , 1.0 10/100 .1 

030 .01 1 O'ltm .1 10/100 .01 

031 .1704 10 K^/57.3 .0852 10/. 5 1.704 

032 .2383 10 S .5959 40/10 2.3832 

033 .1362 10 K4/57.3 .0681 10/. 5 1.362 

220 .5275 1 1/M .211 50/100x10 .5275 

221 .216 10 377(57.3) 21600 .5/100x500 .216 

222 -.1116 10 K5 -.01395 40/. 5 -1.116 

230 .2268 1 D/M 11.34 10/500 .2268 
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Table 23. Pot. settings for simulation of model III with the fast exciter 

Pots. 
Pot. 

setting 
Amp. 
gain Variable Value Scaling 

Value X 
scaling 

600 K^/1000 10 V^A 50K. 
A 

1/100x1/50 K^/100 

601 .6667 10 1/TE 66.67 10/100 6.667 

602 .5 1 l/I^ 50 1/100 1/2 

603 .6667 1 1/TJ. 66.67 1/100 2/3 

611 .0290 1 ''REF 5% full load 

612 .5900 1 'ref Full load 

613 .6667 1 66.67 1/100 .6667 

700 .2 10 1/TR 200 1/100 2.0 

701 .1445 10 lOO/yJl 50/100x1/40 I/4VR 

800 .02 1 KJI 1 100/100x50 1/50 

801 l/20Tp 10 1/TP 50/100 l/2Tp 

802 10 VTj 50/10 5Kp/T^ 

020 .0017 1 .1693 1/100 .001693 

021 .0065 1 .647 1/100 .00647 

022 .2673 10 KZ 2.6731 1 2.6731 

023 .1 1 % 1.0 10/100 .1 

030 .01 1 'iTm .1 10/100 .01 

031 .1704 10 K^/57.3 .0852 10/. 5 1.704 

032 .2383 10 *6 .5959 40/10 2.3832 

033 .1362 10 K^/57.3 .0681 10/. 5 1.362 

220 .5275 1 1/M .211 500/100x10 .5275 

221 .216 10 377(57.3) 21600 .5/100x500 .216 

222 -.1116 10 *5 -.01395 40/. 5 -1.116 

230 .2268 1 D/M 11.34 10/500 .2268 
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Figure 86. Steady state voltages at full load with limiting and saturation for 
fast exciter 
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XII. APPENDIX C. THE NONLINEAR MODEL 

This chapter covers the mathematical development of the nonlinear 

model, model IV, the simulation of model IV under the assumptions made 

in developing model III, the changes necessary for saliency considera­

tions and the development of the d-q-axes saturation functions. 

The assumptions made in developing model IV, the pictorial representa­

tion of the synchronous machine and the resulting circuit diagram have been 

presented in section E of Chapter III. This section outlines the results 

of the mathematical manipulations necessary on the equations presented in 

Chapter III. A more complete description of the development can be found 

in references 4, 5, 33 and 116. The required analog computer diagrams and 

simulation considerations are also discussed. 

1. Basic equations 

The flux linkage equations for the six circuits of the synchronous 

machine are given by Equation 20 in Chapter IV and are restated below for 

convenience. 

A. Development of the Nonlinear Model 

X ^aa ^ab ^ac ^aF ^aD ^aQ ^a 

^ba ^bb ^bc ^bF ^bD ^bQ ^b 

^ca ^cb ^cc ^cF ^cD ^cQ ^c 

a 

X b 

X c 
weber-turns [20] 

^Fa ^Fb ^Fc ^F ^FD ^FQ % 

^a ^Db ^Dc ^DF ^DD ^DQ ^D 

^a ^Qb ^c ^QF ^QD 
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where 

(self-inductance when j = k 
^jk (mutual inductance when j f k 

The inductances in Equation 20 are defined as follows. 

The stator self-inductances are: 

= L + L cos 26 
aa s m 

= Lg + 1% cos 2(6-120) henrys [C-1] 

^cc = Lg + 1% cos 2(8+120) 

If slot effects and saturation are neglected the rotor self-inductances 

are constants and may be defined as : 

SD " s henrys [C-2] 

^QQ " 

The stator mutual inductances are; 

Lab = Ha = -[^s + ̂  2(6+30)3 

^bc ~ ̂ cb ~ -[Mg + Ljj cos 2(6-90)] henrys Mg>L^ [C-3] 

Ha = He = -[Mg + I'm 2(6+150)] 

The rotor mutual inductances are; 

^FD SF ^ 

Lpq = LQP = 0 henrys [C-4] 

^DQ = Lqo = 0 
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The stator-to-field mutual inductances are: 

^aF = Lpa = + % cos 0 

LJJP = = + Mp cos (0-120) henrys [C-5] 

^cF = Lpc = + Mp cos(0+120) 

The stator-to-d-axis damper winding mutual inductances are: 

^aD = ^Da = + ̂  ® 

Lfajj = cos(0-120) henrys [C-6] 

^cD = ^Dc = + WD cos(0+120) 

The stator-to-q-axis damper winding mutual inductances are: 

^aQ = ^Qa = + Mq sin 0 

Lyq = = + Mq sin(0-12O) henrys IC-7] 

:cq - Lqc = + Mq sln(e+120) 

The above definitions of inductances show that most of the induc­

tances are time varying. By applying an appropriate Park-type transforma­

tion, also referred to by some authors as Blondel transformation, the 

time varying characteristic of Equation 20 can be removed. An orthogonal 

transformation is applied in this case and it is defined as: 

P = V2/3 

\lï/2 ĴÏ/2 yfï/2 

cos 0 cos(0-120) cos(0+120) 

sin 0 sin(0-12O) sin(0+120) 

[C-8] 

Applying the above transformation to Equation 20 leads to: 
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X 0 L 0 0 0 0 0 0 ^0 

^d 0 ^d 0 0 ^d 

0 0 0 0 

h 
0 0 0 ip 

0 0 0 

0 0 0 0 

weber-turns 

[C-9a] 

where 

L, = L + + 3/2 L. 
m 

L = Lg + Mg - 3/2 L^j henrys 

I'D = ^3 - 2M3 

[C-9b] 

Using & for a leakage inductance. Equation C-9a can be modified to 

separate the mutual and leakage inductance terms. 

^0 (Lo-&o)+&o 0 0 0 0 0 io 

^d 0 (Ld-&d)+^d ° ^\p2Mg 0 id 
weber-

Aq 0 0 (Lq-&q)+Aq 0 0 •sp̂  turns 

Ap 0 0 [C-IO] 

0 0 & (V^D>+S 0 

0 0 0 0 (LQ-AQ)+AQ 

The voltage equations for the machine are given in Chapter III as 

Equation 18 and is restated belQw for convenience. 
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Va 

Vb 

v„ c 

-Vp 

0 

0 

0 

0 

0 

0 

Q 

0 0 0 0 0 ia ^a 

o
 

o
 

o
 

o
 S ^b 

0 r^ 0 0 0 Vn 
— • + o

 

o
 

o
 

o
 Xp 0 

o
 

o
 

D
 

J"
 

o
 

o
 

o
 

o
 

o
 

volts [18] 

where 

Y„ = -r n 

1 1 

1 1 

1 .1 

i 1 1 1  
a 

ib -^n 1 1 1  

i„ 1 1 1  c 

a 

4 
volts [19] 

= labc -k ialc 

Applying the Park-type transformation. Equation C-8, to the voltage 

equations leads to: 

Vo r+3r 0 0 0 0 0 n io 

Vd 0 r +wL^ 0 0 +0^3/2MQ ^d 

0 -toL^ r 0 

o
 

o
 

o
 

o
 

o
 ^F 

0 

o
 

o
 

o
 

o
 

o
 

0 

— 
I 

o
 

o
 

o
 

o
 

o
 

•
 

/Q 

(Equation continued on next page) 
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0 Lj 

0 0 

0 

0 

0 0 0 0 

0 +yj3j^ +.j372Mjj 0 

0 

0 

0 

«R 

MT 

0 +y]372k^ 0 

0 

0 

o
 

H 
* 

id 

iq 

ip 

ÎD 

.r
F 

volts [C-11] 

Using Equations C-9 and C-11 and defining p as d/dt the machine 

voltage equations can be written as: 

"o 

"^q 

-Vp. 

0 

0 0 0 0 0 

0 r 0 0 0 0 

0 0 r 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

p 0 0 0 0 0 

0 p w 0 0 0 

Q —tli P 0 Q 0 

0 0 0 p 0 0 

0 0 0 0 P 0 

0 0 0 0 0 P 

f
—
 

io io 

id 

^q 

ip 

ifi 

\
 

>-•
 

o
 

^d 

4 

volts [C-12] 

If ve now select an appropriate set of base quantities and then 

normalize the above equations the same form of equations results except 

that we may now use subscript "u" to Indicate per unit quantities (4, 5, 
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116). In the remaining part of the development of the nonlinear model we 

will assume the equations have been appropriately normalized and that we 

are now dealing with per unit quantities without necessarily using the 

subscript u. 

2. Equivalent circuits 

The equivalent circuits of the synchronous machine can be developed 

from the per unit form of Equations C-10 and C-11. Consider the per unit 

form of Equation C-10 with now referred to as X*. 

(L.-Am)+Ao 0 o o' 

0 

0 

0 

0 

0 

0 0 0 0 

0 ° ° 

0 

0 MR (Ld-^D>+^D 0 

0 0 0 (I'q-«q)+«q 

o 

id 

i_ 

D 

L'Q] 

per unit 

[C-13] 

The inductance terms in one equation can be expressed in terms of 

the other inductances in the same equation by setting the current corres­

ponding to that row of equation to 1.0 and setting all other currents to 

zero. It is found that the per unit mutual inductances in the d-axis 

are all equal so that one can define the magnetizing inductance in the 

d-axis as: 

^AD = C'd-^a) = VVZMp = VâTâMjj = (Lp-Ap) = [C-14] 

Similarly it is found that the per unit mutual inductances in the 

q-axis are also the same and the magnetizing inductance in the q-axis 
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may be defined as: 

^AQ ° ' (Lq-^q) IC-15] 

where denotes the armature leakage inductance in per unit and is the 

same in both axes, that is: 

&a = &d = \ 

The flux linkage equation C-11 may be rewritten as: 

where 

= L i 
O 0 

= ^AD + %aid 

= ^AQ + 

4 = ^AD + 

= ^AD + 

II + 

'AB = ^AD (Id + ip 4 

ÂQ 

II 

"q + V 

[C-16] 
per unit 

[C-17] 
per unit 

[C-18] 

Similarly the per unit form of the voltage Equation C-11 may be 

rewritten in terms of the mutual and leakage flux linkages as: 

VQ = -(r+3r^)l^ - pXo where = io(Lo+3I^) 

^d = -rid - - P^AD - *aPid 

V, . -ri, + .A, -

-Vp = -rpip - pXp -rpip - pA^ - Appip 

° = "VD - P^AD - ̂ DP^D 

0 = -rqiq " " ̂QP^Q 
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Figure 87. Equivalent circuits for synchronous machine 
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Equation C-19 describes the equivalent circuits shown in Figure 

87. 

3. Analog computer equations and diagrams 

Solving Equation C-16 for the currents we have: 

"-D 

^d " ̂ AD 
A a 

- \o 

^a 

4 " ̂AD 

- ^AD 

- ^Ap 

per unit [C-20] 

From Equation C-17: 

^AD ^AD^^d + if + [C-17] 

= L 
'AD 

^d " ̂AD ^ ̂F " ̂AD ^ " ̂AD 
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^AD = 

where 

A 
=%D ' -1- + 1_ + 1_+ i. 

^AD 'a F̂ S 

Similarly from Equation C-18; 

*AQ " 

^AQ " M̂t, 
Po ' ̂AQ + \ - ̂ AO] 
I "n J 

= L 
AQ 

fL + 1. 
L^a 4 

AQ 
A_ + i. 
^AQ 

+ L. AQ '•AqCi 
& + 

AQ 
= L 

MQ »Q, 

where 

[C-21] 

[C-22] 

[C-18] 

[C-22] 

[C-23] 
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Equation C-19 can now be solved for the flux linkages using the 

above quantities and the fact that 

A' 1C-24J 

where 

u indicates per unit 

Wg is the base speed or synchronous speed of the machine. 

The results of these manipulations are: 

^o = -'"BJK + [C-25] 

= *8jhd + - ̂ d) - ̂  [C-26] 

X 
q fu - û)_ X 1 dt [c-27] 

BJL q (Ug dJ 

(^AD • V] [C-28] 

r+ ~ 

J S 

"q ° "BJ ̂  

Xp 

= "B 
_ X_ 
SI dt [C-29] 

The next step in the development of the analog computer equations is 

to write the mechanical torque equations and express them in a form suit­

able for the analog computer simulation. The motion of the machine rotor 

may be expressed as: 
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J ̂  ~ = Tg - Tg newton meters [C-31] 

where 

2 J = rotor Inertia kilogram meter 

p « the number of poles of the machine 

(1) " speed of rotor in radians/sec 

TgfTg « mechanical and electrical torque, respectively, newton meters 

The form of Equation C-31 remains the same when expressed in per unit. 

Assuming base quantities compatible to those used for the flux linkages 

and voltage equations have been determined, the form of Equation C-31 that 

can be used on the analog computer is: 

y [ C - 3 2 ]  

where 

Ta " "^m - [C-33] 

_ inertiallv stored energy at synchronous speed ro o/i 
® - rated m of iMchlne 

Afa) " speed deviation from the synchronous speed 

From the above definition of Au we note that the machine speed u at 

any ipstant can be expressed as: 

0) • Wg + Aw [C-35] 
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where 

OJq is the initial value and equals 1. 

The angle 8 appearing in Figure 8, the pictorial representation of 

a synchronous machine, can be expressed as 

0 = Ugt + 6 + 90° electrical radians [C-36] 

where 

5 is the angle between the infinite bus voltage and the q-axis of 

the machine. 

A ' 
Define oj = 0 = oj + 6 [C-37] 

B 

Thus from Equations C-35 and C-37 we have that: 

Aw = 6 radians/sec [C-38] 

5 = ^Audt + 6 g radians [C-39] 

6 = (57.3 Awdt + 6^] mechanical degrees [C-40] 

The electrical torque for the machine and the terminal voltage may, 

respectively, be expressed as (73, 116): 

% " 2 'Vq - [C-41] 

"todq ° V^'tabc ° :C-42] 
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Figure 88 shows phase a of a synchronous machine connected to an 

infinite bus through a transmission line. If Vg is defined as the rms 

value of the infinite bus line-to-neutral voltage, the infinite bus 

voltages in the three phases may be expressed as: 

or 

'aoo COS (Ogt 

= Vg cos(Wgt - 120) volts 

= y/T Vg cos (wgt + 120) 

V , = yfiv. 
—abc" B 

cos tOgt 

cos(w t - 120) 
D 

cos(wgt + 120) 

volts 

[C-43] 

[C-44] 

at 
COQ 

Figure 88. Synchronous machine connected to an infinite bus through a 
transmission line 

Figures similar to Figure 88 can be drawn for phases b and c. The 

voltages for the three circuits can be expressed as: 

Sabc ° + *Elabc + 
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Applying the Park-type transformation. Equation C-8 to Equation 

C-45, and simplifying the results lead to: 

0 i 

-

i^ 0 0 0 i^ o o 0 o 

^d 

II - sin 6 
^d id 

1 o
 

o
 

"d 

V + cos 6 i i 0 10 i 
q q q q 

[C-46] 

The d- and q-axes voltage equations are solved for i and i where 
dt qt 

the subscript t indicates currents flowing from the generator terminals 

to the infinite bus. The results are: 

i \ + "VdJ 
E qt 

[C-47] 

[C-48] 

After introducing an appropriate normalization the form of Equations 

C-47 and C-48 suitable for the analog computer setup are; 

dt 

qt 

= J" [^d ^ - ̂ ^dt - wLsiqcjat 

Wg r 
= [Vq -VTcos 6 - Vqt + "Vdt^^^ 

[C-49] 

[C-50] 

If a large resistance R is placed at the machine terminals the 

voltages v^ and can be expressed in terms of the currents i^, i^, i^^ 

and i^^ as (116): 

^d = R(id - idt) 

\ = %(iq - iqt) 

[C-51] 

[C-52] 
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AD hm ̂  + hi + ̂  

L ^3f-

'MD^^D '•MD^ a 

^d " "B / -'d + ^ (^AD - - dt 

IC-21] 

[C-26] 

-•̂ TQ 

V/o'c 

~ '"B /[^F + ^ (A AD Xj.) dt 

- X,, 

X = u 
D B 

f - V ,, 
J ~D " 

"b'D/'^D 

[C-28] 

[C-29] 

Figure 89. Analog computer diagrams for direct axis equations 
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[C-22] 

— X > AQ 

= "BJ [-\ -
r(A« - ̂ An) 

I 
g - "Aq/ + w_ 

(1). B 
dt [C-27] 

\Q 

+ X.w^ 

\Q WB 
•/ = Q^^AQ ~ at [C-30] 

— X, 

Figure 90. Analog computer diagrams for quadrature axis equations 
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-^e = 2 [Ajiq [C-41] 

- ?e [C-33] 

Figure 91. Analog computer diagrams for torque equations 
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kl- .  f m l  "a [C-32] 

0) = Au + 1 (C-35] 

A (û 
LC 

O 

o-̂  
LC 

D> -05 

.3I(^ j 6 = 47.31^3 I Ao) dt + 6„] [C-40] 

A(0 

,0 
57.3 <i}«/a 

- 0^ 

Figure 92. Analog computer diagrams for mechanical equations 
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dt - îg j [vd ^ - Vat -

- ! . "b/° "̂4 

- I 
. sin 0 

qt 

Wg/oLg RgU:̂ /oL 

= ^ [Vq - '\J 3 cos 6 — Rg: 

y-%F7^ 

\t + "Vdt^ 

-COS 6 

dt-

u^/oL 

-I 

V = R(ij - idf) 

- I 

•̂ -AAAr- o 
LVW—s 

"I. 

r-AAAq 

-—^\AAr 

[C-49] 

[C-50] 

[C-51] 

[C-52] 

Figure 93. Analog computer diagrams for load equations 
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The governor is considered to be comparatively slow for the period 

of time considered in this study and, thereforej. the governor is not 

represented. This is an example of how duration of effects of a partic­

ular section of the system can serve as a means of simplifying a model 

(see first part of Chapter III). 

The analog computer diagrams of the equations presented in this 

section and which are used in the simulation diagram for the synchronous 

machine are shown in Figures 89-93. The complete simulation diagram with 

the slow exciter is shown in Figure 94. 

4. Machine data and potentiometer settings for model IV 

Table 24 shows the machine data (3) . Unless otherwise stated all 

the values in the table are in per unit. The potentiometer settings for 

the machine are given in Table 25. The data and the settings for the 

excitation system have been presented in Appendix A. 

Table 24. Machine data 

Ld 
= 1.70 0.055 II 0.0198 

s 1.64 1.605 R = 100 

i 
a 0.15 0.036 0.02818 

^AD 1.55 "•Q 1.526 0.02846 

^AQ 1.49 r 0.001126 

= 0.101 
^F 

= 0.00805 

4 
= 1.65 = 0.0132 

H 2.37 sec 

^do 5.90 sec 
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Table 25. Potentiometer settings for synchronous machine 

Potenti- Potenti- Ampli-
ometer 
number 

ometer 
settings 

fier 
eain Constant 

Numerical 
substitutions Value 

Scal­
ing 

Value X 
scaling 

000 0.0283 1 rUs/Aa .001126(377)/.15 2.8300 0.010 0.0283 

001 0.9040 1 .0132(377)/.055 90.400 0.010 0.9040 

002 0.6960 1 .02818/.101 0.2785 2.500 0.6960 

003 0.2665 10 1/Aa 1/.15 6.6660 0.400 2.6650 

010 0.0283 1 .001126(377)/.15 2.8300 0.010 0.0283 

Oil 0.2070 10 .0198(377)/.036 207.00 1.000 2.0700 

012 0.7906 1 ^mq/AQ .02846/.036 0.7906 1.000 0.7906 

013 0.2665 10 l/la 6.6660 0.400 2.6650 

100 0.4710 10 377.00 0.0125 4.7100 

101 0.9040 1 90.400 0.010 0.9040 

102 0.5120 1 %)/^D .02818/.055 0.5120 1.000 0.5120 

103 0.2665 10 l/&a 6.6660 0.400 2.6650 

110 0.4710 10 377.00 0.0125 4.7100 

111 0.2070 10 207.00 0.010 2.0700 

112 0.0050 1 R 100. 100.00 2.000 200.00 

113 0.0050 1 & 100. 100.00 2.000 200.00 

200 0.7540 10 
"B 

377.00 0.020 7.5400 

201 0.1212 .1 .000805(377)/.101 3.0300 0.004 .01212 

202 0.1879 1 .02818/.15 0.1879 1.000 0.1879 

210 0.7540 10 
"B 

377.00 0.020 7.5400 

211 0.0283 1 rajg/A^ .001126(377)/.15 2.8300 0.010 0.0283 

212 0.5000 1 ojg/coB 1.0000 0.500 0.5000 
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Table 25 (Continued) 

Potenti­
ometer 
number 

Potenti­
ometer 
settings 

Ampli­
fier 
gain Constant 

Numerical 
substitutions Value 

Scal­
ing 

Value X 
scaling 

213 0.1000 1 L.C. 1 1.0000 0.100 0.1000 

300 0.0283 1 r"B/Aa .001126(377)/.15 2.8300 0.010 0.0283 

301 0.3030 .1 rj-tOg/Ap 3.0300 0.010 0.0303 

302 0.0778 .1 Wgxbase 
change 

377(162v/157KV) 0.3890 0.020 0.00778 

303 0.1055 1 p/2 1/2H 1/2(2.37) 0.2110 0.500 0.1055 

400 0.0188 10 .02(377)/.4 18.850 0.010 0.1885 

401 0.4710 10 UB/Lg 377/.4 944.00 0.005 4.7100 

402 0.7540 10 *6 377.00 0.020 7.5400 

403 0.4710 10 944.00 0.005 4.7100 

410 0.2160 1 57.3wg 57.3(377) 21,600 10-5 0.2160 

412 0.1897 1 ^Mq/^a .02846/.15 0.1897 1.000 0.1897 

413 0.2665 10 1/Aa 6.6660 0.400 2.6650 

500 0.3264 10 •^Ug/Lg 3(377)/.4 1632.0 0.002 3.2640 

501 0.7540 10 377.00 0.020 7.5400 

502 0.3264 10 yJïbî /L̂  1632.0 0.002 3.2640 

503 0.0188 10 18.850 0.010 0.1885 

612 0.0291 1 5% full load 

613 0.5905 1 full load 

610 0.0300 1 10% full load .3pu 0.3000 0.100 0.0300 

611 0.3000 1 full load Tm 3pu 3.0000 0.100 0.3000 
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B. Simulation of Model IV Under the Assumptions of Model III 

Figure 95 shows the patching diagram used for the simulation of 

model IV under the assumptions used in developing model III. The changes 

made in this diagram as compared to Figure 94 include the connection of 

a feedback path from the output of integrator 210 to the input of summer 

203 through inverter 233, potentiometer 812 and switch 401. Another 

change made in the analog patching is the connection of a mechanical 

switch Oil between inverter 602 and potentiometer 302. This connection 

permits the removal of the regulating system and then supplying a constant 

field voltage through potentiometer 810 and inverter 030. 

The simulation technique used has been summarized in section B of 

Chapter V. 

As mentioned in Chapter V, the value of D computed may be specified in 

two ways depending upon whether real time or normalized time is being used. 

The quantity indicated by the setting of potentiometer 812 is D/M and the 

appropriate scaling factor. However, M equals 2H and we can write: 

~ . scaling = Pot. setting (P.S.) [C-53a] 

where scaling factor equals 10/500 in this case. 

" • f'S') tC-53b] 

H is defined as given by Equation C-34, The larger values of 

D given in Table 9 (see Chapter V) result from the use of per unit time. 

When the real time is used the smaller values of D shown in Table 9 apply. 
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„ _ inertiallv stored energy at synchronous speed _ . ^/-i 
" raced KVA of machine 

C. Saliency Considerations 

The two equations affected by the saliency considerations are: 

% = ^Q-'Q 

hfQ = mjnjn 
l'An & & 
AQ a Q 

With Lq equals 1.19 as discussed in Chapter VI and both and &Q 

as given in Table 24: 

L q̂ = 1.19 - 0.15 = 1.04 per unit 

H Ï Q .  " i l l  =  0 . 0 2 8 2  

1.04 0.15 0.036 

From the potentiometer settings given in Table 25, appears in 

the settings for 012 and 412. Recomputing these settings leads to 0.7825 

and 0.1880 for 012 and 412, respectively. 

D. Saturation Functions 

The no load saturation curve supplied with the machine data is shown 

in Figure 96. The saturation function g(v) can be defined as: 
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field current to give that voltage 
on the magnetization curve _ 

field current to give that voltage 
on the air gap line 

- 1 [C-54] 
Ifa 

Using the no load curve and Equation C-54 the saturation function is 

calculated as shown in Table 26. The resulting saturation curve is shown 

in Figure 97. Since v is in per unit, this same curve applies for 

and X^Q if we use the same function for d- and q-axes. 

Since only two diode function generators are available, the exciter 

saturation function was approximated by two straight line segments. The 

segments are line v^ = 0 and the broken lines shown in Figures 79 and 80 

in Appendix A. The slopes for the two lines are 3.75 and 4.70 for slow 

and fast exciters, respectively. Saturation considerations alter 

Equations C-21 and C-22 as shown in Figure 98. Figure 99 shows simulation 

diagram used for saturation considerations. 

Table 26. Computation of the machine saturation function 

V , abc 
p.u. 

^odq 

Vabc 
p.u. 

^fm 
amps. 

^fa 
amps. 

£fm 
ifa e(v) 

^odq 
volts 

g(v) 

volts 

0.750 1.300 260 260 1.0000 0.0000 65.00 0.000 
0.850 1.400 305 292 1.0445 0.0445 70.00 2.225 
0.950 1.645 357 327 1.0917 0.0917 82.25 4.585 
1.000 1.732 390 342 1.1404 0.1404 86.60 7.020 
1.050 1.820 430 360 1.1944 0.1944 91.00 9.720 
1.075 1.865 450 370 1.2162 0.2162 93.25 10.810 
1.100 1.905 480 378 1.2698 0.2698 95.25 13.490 
1.125 1.930 515 385 1.3377 0.3377 96.50 16.885 
1.150 1.992 550 395 1.3924 0.3924 99.60 19.620 
1.175 2.018 600 400 1.5000 0.5000 100.90 25.000 

g(v) = 
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Figure 96. No load saturation curve for the synchronous machine 
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Figure 97. Saturation function for model IV 
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[C-21'] 

MD 
MD 

X 

X 

AD 

AQ SlQ - gC^Aq) rC-22']  

i AQ 

9(\Q) 

Figure 98. Analog computer diagrams for Xj^ and X.^ with saturation 
effects ^ 
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XIII. APPENDIX D. ON THE EFFECT OF LOCAL LOAD 

As noted in section C of Chapter VI, the negative values of 6 found 

there indicate the presence of a large local load on the machine terminals. 

This appendix describes the effects of local load. The amount of local 

load is controlled by the resistance R, which also is used for the computa-

Equations C-51 and C-52, restated above for convenience, show how v^ 

and v^ are related to the currents if a resistance R is connected to the 

terminals of the machine. The analog computer implementation of the 

equations is shown in Figures 93 and 94 where potentiometers 112 and 113 

are used for R. As shown in Table 25, the potentiometer setting required 

for an R of 100 per unit is 0.005 when the summing amplifiers 412 and 413 

are used as high gain amplifiers. Disconnecting the one meg-ohm feedback 

resistor changes 412 and 413 to high gain amplifiers (32). If the feed­

back resistor is connected as was done in the simulations discussed in 

Chapter VI and potentiometers 112 and 113 are set at 0.005, then the 

value of R being used is 0.5 per unit which represents a large local load. 

The result of this is a 6 of about -35 degrees when the generator has zero 

load. Thus the loading and system changes discussed in Chapter VI always 

add to or subtract from this fixed value of 5 equals -35 degrees. 

The equations for model III were developed for the special case of 

zero local load. Zero local load is approximated by letting R equal 100 

per unit. R equals 100 per unit has been accomplished as has been 

tion of the machine terminal voltages v^ and v, 

[C-52] 

[C-51] 

q 
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Figure 100. Initial response of model IV with the high response exciter 
and R = 100 p.u. 
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using high response exciter and R " 100 p.u. 
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Figure 102. Response of model IV to with NLNS, UTS, LS and NLS 
using high response exciter and R > 100 p.u. 
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described in the foregoing. The remainder of this appendix is devoted to 

comparisons of performance with and without local load. 

Figures 100, 101 and 102 are a rerun of Figures 56, 59 and 61, respec­

tively, when R equals 100 per unit was used. In this case the exciter 

saturation is approximated by the two segment straight-line setup shown in 

Figure 99. A comparison of Figures 100, 101 and 102, respectively, with 56, 

59 and 61 shows some differences in the response shown in the corresponding 

figures. 

A comparison of the performance with and without local load indicates 

that the system is more oscillatory without local load. (Compare the 6 and 

Tg traces.) Field voltage is lower without local load. This suggests less 

reactive generation without local load. A subsequent determination of 

initial operating conditions verifies the result that lower Vg accompanies 

the zero local load operating condition. 

The more oscillatory response without local load implies that an 

effect of local load is to increase damping. 

Model III was developed with no local load and the corresponding lin­

earized machine constants shown in Table 21, page 187, were determined for 

no local load. Hence the damping corresponding to no local load has also 

been determined. Table 27 shows the effect of local load on damping 

coefficient D. 

Table 27. Summary of damping required for R = 0.5 p.u. and R = 100 p.u. 

Setting Du=237(P.S.) (Du/a)e) = .628(P.S.) 
of (Per unit torque- (Per unit torque-

Pot 812 sec"l) sec/rad) 

R = 0.5 p.u. Fast exciter .2080 
Slow exciter .2268 

49.30 
53.75 

.1305 

.1425 

R = 100 p.u. Fast exciter .1250 
Slow exciter .1400 

29.65 
33.20 

.0785 
.0880 



www.manaraa.com

230 

It is apparent that the effect of local load increases D signifi­

cantly . 

The following work establishes the initial loading conditions with 

and without local load. 

Table 28. Steady state quantities used in compiling Table 29 

Variable 
Level 

R = 0.5 n.u. R = 100 p.u. 

Variable 
Level Value Value 

Variable volts volts p.u. volts p.u. 

^d 40 -34.74 -0.86850 -46.53 -1.16325 

40 +73.63 1.84075 +66.49 1.66250 

Vt 40 81.47 2.03750 81.20 2.03000 

id 20 -46.03 -2.30150 -31.75 -1.58750 

20 10.69 0.53450 13.76 0.68800 

^dt 20 -11.12 -0.55600 -31.52 -1.57600 

rt
 20 -63.31 -3.16550 +13.42 0.67100 

5 0.5 — 6.88 -13.76° 26.97 53.94° 

l'a 5 15.00 3.0 14.98 2.996 

•H -1.7455 -0.0115 

iqR 3.700 0.017 

The initial or steady state conditions also serve as a means of 

studying the effect of the loqal load. Table 28 shows the steady state 

values both with and without the local load. First the value of R is 

verified with the Initial conditions as shown in Figure 103. 
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Figure 103. Diagram for computing R 

Check for R = 0.5 p.u. 

Check for R = 100 p.u. 

R = l9_ = 1-6625 = 98 p.u. 
V 0.017 

The phasor diagrams for the steady state conditions are shown in 

Figure 104. 
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R = 0.5 p.u 

oa 

13.76° î 

25.5° 
76.9: 

R = 100 p.u 

350 

m 

Figure 104. Phaser diagrams for the machine with and without local load 
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The odq quantities shown both in Table 28 and Figure 104 are converted 

to abc values as follows. 

For R = 0.5 p.u. 

'todq - V^^tabc " i tC-421 

^tabc "r^ ̂todq ~ -^(2.0375) = 1.172 
V3 v? 

W = = ^2.36) = 1.348 

latatc = + Iqc' = ° 

W " ̂ j^dk' + V = = 2.335 

Similarly for R = 100 p.u. 

Vtabc = -prCZ.OS) = 1.16 
V3 

itabc = ^(1-732) = 1.00 

i ^ , = _1_(1.715) = 0.98 
atabc ^ 

iRabc = -;^(-0205) = 0.0117 
V 3  

Using the phasor diagrams and the abc quantities the values shown in 

Table 29 are computed as follows. 

For R = 0.5 p.u. 
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PQ = Vtabc \ahc ® 

= 1.172(1.348) cos (76.92 - 25.5) 

= 1.58 cos 51.42 

= 0.985 p.u. 

% = 'tabc ^tabc ® 

= 1.58 sin 51.42 

= 1.235 p.u. 

^ ^Rabc 

0.5(2.335)2 = .5(5.45) = 2.725 

= 2.725 p.u. 

= Pg - = 0.985 - 2.725 

= -1.740 p.u. 

= 1.235 p.u. 

Similarly for R = 100 p.u. 

= "tabc itabc ® 

= 1.16(1.0) COS (66.6 - 35) 

= 1.16 cos 31.6 

= 0.99 p.u. 



www.manaraa.com

235 

Qg = ^tabc ® ~ sin 31.6 = 0.61 p.u. 

PR " ^Rabc^ = 100(0.0117)2 = 0.0136 p.u. 

= Pg - P% = 0.99 - 0.0136 = 0.9864 p.u. 

Qj^ = 0.61 p.u. 

The foregoing considerations are summarized in Figure 105 and Table 

29. The difference in the var output of the machine Qg explains the 

differences in the field voltage noted while comparing Figures 101 and 

102, respectively, with Figures 59 and 61. 

1.0^0 

KA/V-mTP-

Figure 105. A machine connected to an infinite bus through a transmission 
line 

Table 29. Comparison of variables shown in Figure 105 for R = 0.5 p.u. 
and R = 100 p.u. 

V PG PR PL A 6 QG QL 

0.5 1.172 0.985 2.7250 -1.7400, -39.26° -13.76* 1.235 1.235 
100.0 1.160 0.990 0.0136 +0.9864 +18.9° +53.94° 0.610 0.610 
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